§20. Полюс, поляра, поляритет.
Пусть на проективной плоскости P2 задана овальная линия γ, имеющая в некотором репере уравнение
aij xi xj = 0 (1)
Определение. Точки P (p1, p2, p3) и Q (q1, q2, q3) называются сопряженными относительно овальной линии, если выполняется условие
aij piqj = 0 (2)
На первый взгляд может показаться, что сопряженность двух точек относительно овальной линии зависит от выбора репера, поскольку уравнение овальной линии рассматривается в определенном репере. Однако, как мы убедимся позже, сопряженность точек относительно овальной линии носит геометрический характер, то есть не зависит от выбора репера на проективной плоскости.
Если точка P лежит на овальной линии, то, вспоминая уравнение касательной прямой к линии второго порядка ((9) §19), убеждаемся, что точки P и Q сопряжены относительно γ тогда и только тогда, когда точка Q лежит на касательной к линии второго порядка в точке P.
Следующая теорема раскрывает геометрический смысл сопряженности двух точек, не лежащих на данной овальной линии.
Т еорема. Пусть на проективной плоскости заданы овальная линия γ, и две точки P и Q, не лежащие на γ, причем прямая (PQ) пересекает γ в двух различных точках M и N. Для того, чтобы P и Q были сопряжены относительно γ, необходимо и достаточно, чтобы пара точек P и Q гармонически разделяла пару точек M и N, (т.е. чтобы сложное отношение четырех точек P, Q, M и N было равно -1: (PQ, MN) = -1.
Рис. 17.
Доказательство. Выберем на проективной плоскости произвольный репер R = (A1, A2, A3, E), пусть в этом репере овальная линия имеет уравнение (1) и точки P и Q приобретают проективные координаты P (p1, p2, p3) , Q (q1, q2, q3); прямая (PQ) задается параметрическими уравнениями
x1= λ p1 + μ q1; x2= λ p2 + μ q2; x3= λ p3 + μ q3 (3)
Пусть точки пересечения прямой (PQ) и овальной линии имеют следующие координаты:
M(λ1 p1 + μ1 q1, λ1 p2 + μ1 q2, λ1 p3 + μ1 q3)
N(λ2 p1 + μ2 q1, λ2 p2 + μ2 q2, λ2 p3 + μ2 q3) .
Вычислим сложное отношение (PQ, MN). Обозначим через P′, Q′, M′, N′ проекции точек P, Q, M, N на координатную прямую (A1A2) из центра A3, тогда в репере R3 = (A1, A2, E3) (E3 =( A3 E ∩ (A1 A2)) имеем P′ (p1, p2) , Q′ (q1, q2), M′(λ1 p1 + μ1 q1, λ1 p2 + μ1 q2), N′(λ2 p1 + μ2 q1, λ2 p2 + μ2 q2).
(PQ, MN) = (P′Q′, M′N′) = = = =
Заметим, что = -1 тогда, и только тогда, когда = 0
Подставляя соотношение (3) в уравнение (1), получаем после деления на λ2:
A22+ 2A12 + A11 = 0 (4)
Поскольку точки P и Q не лежат на овальной линии, то A22 = aijpiqj ≠ 0 A11 = aij piqj ≠ 0.
Так как точки M и N лежат на овальной линии, то = - .
Точки P и Q сопряжены относительно γ тогда и только тогда, когда aijpiqj = A12= 0, т.е. P и Q сопряжены, если и только если = 0, что в свою очередь равносильно тому, что (PQ, MN) = -1.
Определение. Пусть на проективной плоскости задана овальная линия γ и точка P. Полярой называется множество точек d, сопряженных с точкой P относительно γ, а сама точка P называется полюсом поляры d.
Если овальная линия задается в некотором репере уравнением (1), точка P имеет координаты (p1, p2, p3), то из условия сопряженности (2) получаем уравнение поляры d:
(ai1pi) x1 + (ai2pi) x2 + (ai3pi) x3 = 0 (5)
Поскольку овальная линия невырождена, то не все коэффициенты при x1, x2, x3 равны нулю, поэтому d – прямая. Для каждой точки P (p1, p2, p3), проективной плоскости существует поляра (5) относительно овальной линии (1), и обратно для каждой прямой u1 x1 + u2x2 + u3x3 = 0 существует единственный полюс P, координаты которого определяются системой уравнений
a11p1+ a21 p2+ a31 p3 = λu1 a12p1+ a22 p2+ a32 p3) = λu2 a13p1+ a23 p2+ a33 p3) = λu3,
где λ ≠ 0.
Овальная линия не вырождена, определитель системы не равен нулю, поэтому точка P определяется однозначно (координаты точки P находятся с точностью до ненулевого множителя).
Таким образом, любая овальная линия определяет биекцию P2 → (P2)′ проективной плоскости P2 на множество (P2)′ ее прямых.
Теорема о взаимности поляритета. Пусть на проективной плоскости задана овальная линия. Если точка Q лежит на поляре точки P, то точка P лежит на поляре точки Q.
Задача 45. С помощью одной линейки (без циркуля) построить касательную, проходящую через заданную точку, к заданной овальной линии на расширенной плоскости.
Задача 46. Пусть на расширенной плоскости задана овальная линия. По данному полюсу построить поляру; по данной поляре построить полюс.
- Глава 1. Первоначальные понятия, определения, факты. §1. Возникновение проективной геометрии. Центральное проектирование
- §2. Понятие проективного пространства. Простейшие свойства
- §3. Модели проективного пространства
- §4. Понятие проективных координат
- §5. Проективные координаты на плоскости
- §6. Уравнение прямой на проективной плоскости
- §7. Преобразование проективных координат
- §8. Принцип двойственности
- Глава 2. Некоторые линейные образы проективной геометрии §9. Теорема Дезарга
- §10. Сложное отношение четырех точек прямой
- §11. Сложное отношение четырех прямых пучка проективной плоскости
- §12. Полный четырехвершинник на проективной плоскости
- §13. Проективные отображения прямых и пучков
- §14. Теорема Паппа
- §15. Преобразования проективной прямой. Инволюции.
- §16. Преобразования проективной плоскости. Гомологии.
- Глава 3. Линии второго порядка на проективной плоскости §17. Понятие проективной линии второго порядка
- §18. Проективная классификация линий второго порядка.
- §19. Пересечение проективной линии второго порядка с прямой. Касательная к линии второго порядка.
- §20. Полюс, поляра, поляритет.
- §21. Теорема Штейнера.
- §22. Теоремы Паскаля и Брианшона .
- §23. Предельные случаи теорем Паскаля и Брианшона
- Связь между проективными и аффинными координатами. Геометрия аффинной плоскости с проективной точки зрения.
- Приложение 1 Ответы, указания, решения задач к главам 1, 2, 3.
- Задачи с решениями по всему курсу.
- М етодические указания
- Приложение 2 Содержание курса Проективная геометрия
- 1.Сравнительное изложение аффинной и евклидовой
- 2. Построение проективного пространства
- 3. Проективные координаты точек, проективные системы координат
- 4. Линии 1 порядка на проективной плоскости
- 5. Линии 2 порядка на проективной плоскости
- 6. Проективные преобразования проективных пространств
- 7. Приложение проективной геометрии к решению задач элементарной геометрии
- Практические задания с решениями
- Тема 1. Сравнительное изложение аффинной и евклидовой геометрий
- Тема 2. Построение проективного пространства
- Построить образы отрезка, луча, прямой, угла, треугольника, окружности при параллельном и центральном проектировании. Рассмотреть различное расположение центра проекций и плоскости проекций.
- Построить следующие сечения конуса плоскостями: эллипсы, параболы, гиперболы.
- Тема 3. Проективные координаты точек, проективные системы координат. Первое занятие.
- На проективной прямой в модели пучка прямых построить прямую пучка (проективную точку) с координатами (a:b).
- На проективной плоскости в модели связки прямых построить прямую пучка (проективную точку) с координатами (a:b:c).
- Тема 3. Проективные координаты точек, проективные системы координат. Второе занятие.
- Написать уравнение бесконечно удаленной прямой в однородных координатах. Рассмотрите разные системы однородных координат на пополненной плоскости.
- Найти однородные координаты точки пересечения прямых
- Найти аффинные координаты точки пересечения прямых
- Найти однородные координаты точки пересечения прямой
- Тема 4. Линии 1 порядка на проективной плоскости. Первое занятие.
- На проективной плоскости прямые a, b, c заданы уравнениями
- Решить аналогичную задачу, если прямые заданы общими уравнениями в аффинных координатах.
- Тема 4. Линии 1 порядка на проективной плоскости. Второе занятие.
- Решение задач, аналогичных рассмотренным в практическом занятии №6, в случае гармонического отношения четырех точек проективной прямой или четырех прямых пучка.
- Построение четвертой гармонической точки прямой или четвертой гармонической прямой пучка для трех данных точек или прямых соответственно.
- Сделать рисунки к теореме Дезарга в случаях, когда
- Решение задач на аффинной плоскости с использованием теоремы Дезарга.
- Записать аффинное уравнение кривой 2 порядка в однородных координатах и, наоборот, записать однородное уравнение кривой 2 порядка в аффинных координатах.
- Найти точки пересечения кривых из задачи 1 с несобственной прямой.
- Даны канонические уравнения эллипса и гиперболы на аффинной плоскости. Записать эти уравнения в однородных координатах и найти проективное преобразование, переводящее кривые друг в друга.
- Решить предыдущую задачу для следующих кривых:
- Тема 7. Приложение проективной геометрии к решению задач элементарной геометрии
- Список рекомендуемой литературы Основной