На проективной прямой в модели пучка прямых построить прямую пучка (проективную точку) с координатами (a:b).
Рассмотреть 2 случая:
а) проективная система координат задана классом эквивалентности базисов e1,e2 ,
б) проективная система координат задана упорядоченной тройкой прямых пучка R={e1,e2,e} .
Решение.
На рисунке 1 показано построение прямой пучка в случае а), а на рисунке 2 – в случае б). Словесное описание построения восстановите сами.
Рис.1 Рис. 2
-
На проективной прямой в модели пополненной прямой построить точку с координатами (a:b) относительно проективной системы координат R={E1,E2,E} .
Рассмотреть случай, когда все точки E1,E2,E являются обычными точками пополненной прямой, и все 3 случая, когда одна из трех базисных точек E1,E2,E является бесконечно удаленной точкой.
Решение.
На рисунке 3 показано построение точки М в случае, когда точки E1,E2,E являются обычными точками пополненной прямой.
Рис.3
На рисунке 3 показано построение точки М в случае, когда точка E является бесконечно удаленной точкой.
Рис.4
-
Содержание
- Глава 1. Первоначальные понятия, определения, факты. §1. Возникновение проективной геометрии. Центральное проектирование
- §2. Понятие проективного пространства. Простейшие свойства
- §3. Модели проективного пространства
- §4. Понятие проективных координат
- §5. Проективные координаты на плоскости
- §6. Уравнение прямой на проективной плоскости
- §7. Преобразование проективных координат
- §8. Принцип двойственности
- Глава 2. Некоторые линейные образы проективной геометрии §9. Теорема Дезарга
- §10. Сложное отношение четырех точек прямой
- §11. Сложное отношение четырех прямых пучка проективной плоскости
- §12. Полный четырехвершинник на проективной плоскости
- §13. Проективные отображения прямых и пучков
- §14. Теорема Паппа
- §15. Преобразования проективной прямой. Инволюции.
- §16. Преобразования проективной плоскости. Гомологии.
- Глава 3. Линии второго порядка на проективной плоскости §17. Понятие проективной линии второго порядка
- §18. Проективная классификация линий второго порядка.
- §19. Пересечение проективной линии второго порядка с прямой. Касательная к линии второго порядка.
- §20. Полюс, поляра, поляритет.
- §21. Теорема Штейнера.
- §22. Теоремы Паскаля и Брианшона .
- §23. Предельные случаи теорем Паскаля и Брианшона
- Связь между проективными и аффинными координатами. Геометрия аффинной плоскости с проективной точки зрения.
- Приложение 1 Ответы, указания, решения задач к главам 1, 2, 3.
- Задачи с решениями по всему курсу.
- М етодические указания
- Приложение 2 Содержание курса Проективная геометрия
- 1.Сравнительное изложение аффинной и евклидовой
- 2. Построение проективного пространства
- 3. Проективные координаты точек, проективные системы координат
- 4. Линии 1 порядка на проективной плоскости
- 5. Линии 2 порядка на проективной плоскости
- 6. Проективные преобразования проективных пространств
- 7. Приложение проективной геометрии к решению задач элементарной геометрии
- Практические задания с решениями
- Тема 1. Сравнительное изложение аффинной и евклидовой геометрий
- Тема 2. Построение проективного пространства
- Построить образы отрезка, луча, прямой, угла, треугольника, окружности при параллельном и центральном проектировании. Рассмотреть различное расположение центра проекций и плоскости проекций.
- Построить следующие сечения конуса плоскостями: эллипсы, параболы, гиперболы.
- Тема 3. Проективные координаты точек, проективные системы координат. Первое занятие.
- На проективной прямой в модели пучка прямых построить прямую пучка (проективную точку) с координатами (a:b).
- На проективной плоскости в модели связки прямых построить прямую пучка (проективную точку) с координатами (a:b:c).
- Тема 3. Проективные координаты точек, проективные системы координат. Второе занятие.
- Написать уравнение бесконечно удаленной прямой в однородных координатах. Рассмотрите разные системы однородных координат на пополненной плоскости.
- Найти однородные координаты точки пересечения прямых
- Найти аффинные координаты точки пересечения прямых
- Найти однородные координаты точки пересечения прямой
- Тема 4. Линии 1 порядка на проективной плоскости. Первое занятие.
- На проективной плоскости прямые a, b, c заданы уравнениями
- Решить аналогичную задачу, если прямые заданы общими уравнениями в аффинных координатах.
- Тема 4. Линии 1 порядка на проективной плоскости. Второе занятие.
- Решение задач, аналогичных рассмотренным в практическом занятии №6, в случае гармонического отношения четырех точек проективной прямой или четырех прямых пучка.
- Построение четвертой гармонической точки прямой или четвертой гармонической прямой пучка для трех данных точек или прямых соответственно.
- Сделать рисунки к теореме Дезарга в случаях, когда
- Решение задач на аффинной плоскости с использованием теоремы Дезарга.
- Записать аффинное уравнение кривой 2 порядка в однородных координатах и, наоборот, записать однородное уравнение кривой 2 порядка в аффинных координатах.
- Найти точки пересечения кривых из задачи 1 с несобственной прямой.
- Даны канонические уравнения эллипса и гиперболы на аффинной плоскости. Записать эти уравнения в однородных координатах и найти проективное преобразование, переводящее кривые друг в друга.
- Решить предыдущую задачу для следующих кривых:
- Тема 7. Приложение проективной геометрии к решению задач элементарной геометрии
- Список рекомендуемой литературы Основной