§8. Принцип двойственности
Отношение взаимной принадлежности точек, прямых и плоскостей в трехмерном пространстве обычно выражается словами: «точка принадлежит прямой», «прямая проходит через точку», «прямая принадлежит плоскости», «плоскость содержит прямую». Введем термин «инцидентность», обозначающий взаимную принадлежность. Будем говорить: «точка инцидентна прямой», «прямая инцидентна точке», «прямая инцидентна плоскости».
Принцип двойственности для проективной плоскости. Если верно некоторое утверждение «А» для точек и прямых, выраженное в терминах инцидентности, то верно также двойственное утверждение «А*», в котором слово «точка» заменено словом «прямая», а слово «прямая» – словом «точка».
Например: Через две различные точки на проективной плоскости проходит единственная прямая.
Двойственное утверждение: Две различные прямые на проективной плоскости имеют единственную общую точку.
Принцип двойственности для проективного пространства. Если верно некоторое утверждение «В» для точек, прямых и плоскостей, выраженное в терминах инцидентности, то верно также двойственное утверждение «В*», в котором слово «точка» заменено словом «плоскость», слово «прямая» остается без изменения, а слово «плоскость» заменяется на слово «точка».
Например: Две различные плоскости в трехмерном проективном пространстве имеют единственную общую прямую.
Двойственное утверждение: Через две различные точки на проективной плоскости проходит единственная прямая.
«Не слишком ли я прямолинеен?» –
подумал червяк и свернулся клубочком.
Из жизни животных.
- Глава 1. Первоначальные понятия, определения, факты. §1. Возникновение проективной геометрии. Центральное проектирование
- §2. Понятие проективного пространства. Простейшие свойства
- §3. Модели проективного пространства
- §4. Понятие проективных координат
- §5. Проективные координаты на плоскости
- §6. Уравнение прямой на проективной плоскости
- §7. Преобразование проективных координат
- §8. Принцип двойственности
- Глава 2. Некоторые линейные образы проективной геометрии §9. Теорема Дезарга
- §10. Сложное отношение четырех точек прямой
- §11. Сложное отношение четырех прямых пучка проективной плоскости
- §12. Полный четырехвершинник на проективной плоскости
- §13. Проективные отображения прямых и пучков
- §14. Теорема Паппа
- §15. Преобразования проективной прямой. Инволюции.
- §16. Преобразования проективной плоскости. Гомологии.
- Глава 3. Линии второго порядка на проективной плоскости §17. Понятие проективной линии второго порядка
- §18. Проективная классификация линий второго порядка.
- §19. Пересечение проективной линии второго порядка с прямой. Касательная к линии второго порядка.
- §20. Полюс, поляра, поляритет.
- §21. Теорема Штейнера.
- §22. Теоремы Паскаля и Брианшона .
- §23. Предельные случаи теорем Паскаля и Брианшона
- Связь между проективными и аффинными координатами. Геометрия аффинной плоскости с проективной точки зрения.
- Приложение 1 Ответы, указания, решения задач к главам 1, 2, 3.
- Задачи с решениями по всему курсу.
- М етодические указания
- Приложение 2 Содержание курса Проективная геометрия
- 1.Сравнительное изложение аффинной и евклидовой
- 2. Построение проективного пространства
- 3. Проективные координаты точек, проективные системы координат
- 4. Линии 1 порядка на проективной плоскости
- 5. Линии 2 порядка на проективной плоскости
- 6. Проективные преобразования проективных пространств
- 7. Приложение проективной геометрии к решению задач элементарной геометрии
- Практические задания с решениями
- Тема 1. Сравнительное изложение аффинной и евклидовой геометрий
- Тема 2. Построение проективного пространства
- Построить образы отрезка, луча, прямой, угла, треугольника, окружности при параллельном и центральном проектировании. Рассмотреть различное расположение центра проекций и плоскости проекций.
- Построить следующие сечения конуса плоскостями: эллипсы, параболы, гиперболы.
- Тема 3. Проективные координаты точек, проективные системы координат. Первое занятие.
- На проективной прямой в модели пучка прямых построить прямую пучка (проективную точку) с координатами (a:b).
- На проективной плоскости в модели связки прямых построить прямую пучка (проективную точку) с координатами (a:b:c).
- Тема 3. Проективные координаты точек, проективные системы координат. Второе занятие.
- Написать уравнение бесконечно удаленной прямой в однородных координатах. Рассмотрите разные системы однородных координат на пополненной плоскости.
- Найти однородные координаты точки пересечения прямых
- Найти аффинные координаты точки пересечения прямых
- Найти однородные координаты точки пересечения прямой
- Тема 4. Линии 1 порядка на проективной плоскости. Первое занятие.
- На проективной плоскости прямые a, b, c заданы уравнениями
- Решить аналогичную задачу, если прямые заданы общими уравнениями в аффинных координатах.
- Тема 4. Линии 1 порядка на проективной плоскости. Второе занятие.
- Решение задач, аналогичных рассмотренным в практическом занятии №6, в случае гармонического отношения четырех точек проективной прямой или четырех прямых пучка.
- Построение четвертой гармонической точки прямой или четвертой гармонической прямой пучка для трех данных точек или прямых соответственно.
- Сделать рисунки к теореме Дезарга в случаях, когда
- Решение задач на аффинной плоскости с использованием теоремы Дезарга.
- Записать аффинное уравнение кривой 2 порядка в однородных координатах и, наоборот, записать однородное уравнение кривой 2 порядка в аффинных координатах.
- Найти точки пересечения кривых из задачи 1 с несобственной прямой.
- Даны канонические уравнения эллипса и гиперболы на аффинной плоскости. Записать эти уравнения в однородных координатах и найти проективное преобразование, переводящее кривые друг в друга.
- Решить предыдущую задачу для следующих кривых:
- Тема 7. Приложение проективной геометрии к решению задач элементарной геометрии
- Список рекомендуемой литературы Основной