matan2
12. Теорема Лорана про розвинення анал.Функції в ряд Лорана
Будь-яка функція , однозначна і аналітична в області D ( ) може бути представлена в цьому кільці збіжним рядом Лорана .
Зауваження
Охоплюються випадки:
1) круг без центра – точки
2) зовні кола
3) вся площина без точки
Доведення
Тоді в області функція аналітична. Має місце інтегральна формула Коші : .
1) На маємо
(як сума геометричної прогресії із знаменником ).
- аналітична на неперервна, обмежена, тоді на рівномірно збігається і ряд його можна почленно інтегрувати:
2) На маємо :
- неперервна, обмежена в точках ряд буде збігатися рівномірно і після множення на :
.
Можна інтегрувати на почленно :
Таким чином, отримали
(з теореми Коші для багатозв’язних областей випливає, що
). Доведено.
Содержание
- 11. Ряд Лорана аналіт.Функції, його єдинственність для анал.Функц.
- 12. Теорема Лорана про розвинення анал.Функції в ряд Лорана
- 13. Ізольовані особливі точки. Класифікація.
- 14. Теорема про правильну точку аналітичної функції.
- 15. Полюси. Необхідна і достатня умова полюса к-го порядку.
- 16. Зв’язок характеру особливої ізольованої точки з виглядом розкладу в ряд Лорана в околі цієї точки
- 17. Характер нескінченно віддаленої особливої точки
- 18. Лишки. Їх зв’язок з інтегралом по замкненій кривій
- 19. Обчислення лишків
- 20. Лишки в нескінченно віддаленій точці
- 21. Застосування лишків для обчислення визначених інтегралів
- 22. Застосування лишків до невласних інтегралів
- 23. Застосування лишків до невласних інтегралів
- 24. Тригонометричні ряди Фур’є
- 25. Абстрактні ряди Фур’є
- 26. Нерівність Коші-Буняковського та теорема Піфагора.
- 27. Основні властивості коефіцієнтів Фур’є. Нерівність Бесселя
- Нерівність Бесселя
- 28. Поточкова збіжність тригонометричних рядів Фур'є
- 29. Лема Рімана та наслідок з неї.
- 30. Достатня умова збіжності ряду Фур’є в точці.
- 31. Теорема Фейєра та наслідки з неї.
- 32. Зв’язок швидкості спадання коефіцієнтів ряду Фур’є з гладкістю функції
- 33. Теорема про повноту тригонометричної системи
- 34. Перетворення Фур’є, існування, властивості.
- 35. Достатні умови представлення функції в інтеграл Фур’є
- 36. Перетворення Лапласа. Аналітичність перетворення Лапласа.
- 37. Властивоcті перетворень Лапласа
- 38. Диференціювання та інтегрування оригінала та зображення
- 39. Згортка функції. Зображення згортки.
- 40. Обернене перетворення Лапласа. Формула Рімана-Меліна
- 41. Лема Жордана. Формула обернення.