logo search
Некоторые замечательные кривые

2.5 Задача

Дана циссоида Диокла с полюсом в точке O, осью OA и параметром 2a. Приняв точку O за полюс, а ось кривой за ось полярной системы, вывести уравнение кривой в полярных координатах. Записать уравнение кривой в прямоугольной декартовой системе координат.

Решение:

Пусть O - начало координат, OX - ось абсцисс. Тогда уравнение в прямоугольной системе координат:

.

Если O - полюс и OX - полярная ось, то уравнение в полярных координаты будет иметь вид:

.

3. Декартов лист

3.1 Исторические сведения

В 1638 г. Р. Декарт, чтобы опровергнуть (неверно им понятое) правило П. Ферма для нахождения касательных, предложил Ферма найти касательную к линии . При обычном для нас толковании отрицательных координат эта линия, которую в 18 веке стали называть декартовым листом, состоит из петли OBAC (рис.4) и двух бесконечных ветвей (OI, OL).

Но в таком виде ее представил впервые Х. Гюйгенс (в 1692 г.). До этого линию представляли в виде четырех лепестков (один из них OBAC), симметрично расположенных в четырех координатных углах. Поэтому ее называли «цветком жасмина».