2.2 Исторические сведения
Диокл определял циссоиду с помощью другого построения. Он проводил диаметр BD, перпендикулярный OA; точка M получалась в пересечении хорды OE с прямой GG? BD, проведенной через точку G, симметричную с E относительно BD. Поэтому линия Диокла располагалась целиком внутри круга C. Она состояла из дуг OB и OD. Если замкнуть линию BOD полуокружностью BAD, описанной точкой E, получается фигура, напоминающая лист плюща. Отсюда название «циссоида».
Примерно в 1640 г. Роберваль, а позднее Р. де Слюз заметили, что циссоида неограниченно продолжается и за пределы окружности, если точка E описывает и другую полуокружность BOD; тогда M лежит на продолжении хорды OE. Однако наименование «циссоида Слюза», предложенное Гюйгенсом, не утвердилось в литературе.
2.3 Площадь S полосы
заключенной между циссоидой и ее асимптотой (эта полоса простирается в бесконечность), конечна; она втрое больше площади производящего круга C:
.
2.4 Объем V тела вращения
вышеупомянутой полосы около асимптоты UV равен объему V? тела вращения круга C около той же оси (Слюз):
.
При вращении той же полосы около оси симметрии получается тело бесконечного объема.
2.5 Задача
Дана циссоида Диокла с полюсом в точке O, осью OA и параметром 2a. Приняв точку O за полюс, а ось кривой за ось полярной системы, вывести уравнение кривой в полярных координатах. Записать уравнение кривой в прямоугольной декартовой системе координат.
Решение:
Пусть O - начало координат, OX - ось абсцисс. Тогда уравнение в прямоугольной системе координат:
.
Если O - полюс и OX - полярная ось, то уравнение в полярных координаты будет иметь вид:
.
3. Декартов лист
Yandex.RTB R-A-252273-3- Введение
- 1. Строфоида
- 1.1 Определение.
- 2.2 Исторические сведения
- 3.1 Исторические сведения
- 4.2 Исторические сведения
- 1.3 Стереометрическое образование
- 1.4 Особенности формы
- 1.5 Задача
- 2. Циссоида Диокла
- 2.1 Определение и построение
- 2.3 Площадь S полосы
- 2.4 Объем V тела вращения
- 2.5 Задача
- 3.2 Построение
- 3.3 Особенности формы
- 3.4 Задача
- 4.3 Особенности формы
- 4.4 Свойства нормали
- 4.5 Построение касательной
- 5. Лемниската Бернулли
- 5.2 Исторические сведения
- 5.4 Особенности формы
- 5.6 Построение касательной
- 5.7 Задача
- Заключение
- Кривые Безье.
- 11.6. Второй замечательный предел
- Некоторые свойства периодических кривых
- § 7.3. Некоторые свойства периодических кривых, обладающих симметрией.
- Некоторые замечательные пределы
- 1.15. Некоторые замечательные пределы
- 1.44 Потенциальные кривые и их анализ на некоторых примерах____________________