3.2 Построение
Чтобы построить декартов лист с диаметром петли проведем окружность A радиуса и какую-либо прямую GH, параллельную AO. Далее проведем прямые AA? и OE, перпендикулярные AO, и отметим точки A?, E их пересечения с GH. Наконец, отложим на луче OA отрезок OF = 3OA и проведем прямую FE. Теперь искомая линия строится по точкам следующим образом.
Через O проводим любую прямую ON и через точку N, где эта прямая пересекает (вторично) окружность, проводим NQAA?. Точку Q, где NQ пересекает прямую OF соединяем с A? и отмечаем точку K, где QA? пересекает FE. Проводим прямую AK до пересечения с прямой GH в точке Q?. Наконец, откладываем на прямой OA отрезок OP, равный и равнонаправленный с отрезком A?Q?. Прямая M1M2, проведенная через P параллельно AA?, пересечет прямую ON в точке M1. Эта точка (а также точка M2, симметричная ей относительно AO), принадлежит искомой линии.
Когда точка N, исходя из O, описывает окружность A против часовой стрелки, точка M1 описывает траекторию LOCABOI.
- Введение
- 1. Строфоида
- 1.1 Определение.
- 2.2 Исторические сведения
- 3.1 Исторические сведения
- 4.2 Исторические сведения
- 1.3 Стереометрическое образование
- 1.4 Особенности формы
- 1.5 Задача
- 2. Циссоида Диокла
- 2.1 Определение и построение
- 2.3 Площадь S полосы
- 2.4 Объем V тела вращения
- 2.5 Задача
- 3.2 Построение
- 3.3 Особенности формы
- 3.4 Задача
- 4.3 Особенности формы
- 4.4 Свойства нормали
- 4.5 Построение касательной
- 5. Лемниската Бернулли
- 5.2 Исторические сведения
- 5.4 Особенности формы
- 5.6 Построение касательной
- 5.7 Задача
- Заключение
- Кривые Безье.
- 11.6. Второй замечательный предел
- Некоторые свойства периодических кривых
- § 7.3. Некоторые свойства периодических кривых, обладающих симметрией.
- Некоторые замечательные пределы
- 1.15. Некоторые замечательные пределы
- 1.44 Потенциальные кривые и их анализ на некоторых примерах____________________