3.4 Задача
Написать уравнение декартова листа в прямоугольной системе координат и, приняв точку O за полюс, в полярной системе координат.
Решение:
Уравнение в прямоугольной системе:
.
Уравнение в полярной системе (OX - полярная ось):
.
4. Улитка Паскаля
4.1 Определение и построение
Даны: Точка O (полюс), окружность K диаметра OB=a (рис.6), проходящая через полюс (основная окружность; она показана на чертеже пунктиром), и отрезок . Из полюса O проводим произвольную прямую OP. От точки P, где прямая OP вторично пересекает окружность, откладываем в обе стороны от P отрезки . Геометрическое место точек M1, M2 (жирная линия на рис.6) называется улиткой Паскаля - в честь Этьена Паскаля (1588 - 1651), отца знаменитого французского ученого Блеза Паскаля (1623 - 1662).
4.2 Исторические сведения
Термин «улитка Паскаля» предложен Ж. Робервалем, современником и другом Паскаля. Роберваль рассматривал эту линию как один из видов обобщенной конхоиды.
- Введение
- 1. Строфоида
- 1.1 Определение.
- 2.2 Исторические сведения
- 3.1 Исторические сведения
- 4.2 Исторические сведения
- 1.3 Стереометрическое образование
- 1.4 Особенности формы
- 1.5 Задача
- 2. Циссоида Диокла
- 2.1 Определение и построение
- 2.3 Площадь S полосы
- 2.4 Объем V тела вращения
- 2.5 Задача
- 3.2 Построение
- 3.3 Особенности формы
- 3.4 Задача
- 4.3 Особенности формы
- 4.4 Свойства нормали
- 4.5 Построение касательной
- 5. Лемниската Бернулли
- 5.2 Исторические сведения
- 5.4 Особенности формы
- 5.6 Построение касательной
- 5.7 Задача
- Заключение
- Кривые Безье.
- 11.6. Второй замечательный предел
- Некоторые свойства периодических кривых
- § 7.3. Некоторые свойства периодических кривых, обладающих симметрией.
- Некоторые замечательные пределы
- 1.15. Некоторые замечательные пределы
- 1.44 Потенциальные кривые и их анализ на некоторых примерах____________________