1. Загальна форма задачі лінійного програмування (лп).
Означення 1. Загальною формою задачі ЛП є задача на знаходження екстремуму (мінімуму чи максимуму) лінійної цільової функції f при лінійній системі обмежень gi, що включає як рівності, так і нерівності з обох боків при невідомих змінних, з яких одні пов’язані умовою невід’ємності, другі – умовою недодатності, а на знак третіх ніяких умов не накладено, тобто задача має таких вигляд:
f(x)= c1x1 + c2x2 + …. + cnxn →extr (max/min) (1)
a11x1 + a12x2 + a13x3 + ….. +a1nxn{ ≤ = ≥ }b1
a21x1 + a22x2 + a33x3 + …..+ a2nxn{ ≤ = ≥ }b2
ak1x1 + ak2x2 + ak3x3 + …….+ aknxn{ ≤ = ≥ }bk (2)
am.1x1 + am.2x2 + am.3x3 + am.nxn { ≤ = ≥ } bm
xi≥0 i= 1,m (3)
Отже, загальна задача ЛП є формою із змішаною системою обмежень .
Означення 2. Задача ЛП має канонічний вигляд, якщо в загальній формі задачі ЛП присутні тільки обмеження (2) у вигляді рівнянь та (3).
Означення 3. Задача ЛП має стандартний вигляд, якщо в загальній формі задачі ЛП присутні тільки обмеження (2) у вигляді нерівностей ≤ та (3), коли шукається max цільвої функції f, або в загальній формі задачі ЛП присутні тільки обмеження (2) у вигляді ≥ та (3), коли шукається min цільвої функції f.
Перейти від стандартного вигляду задачі ЛП можна за допомогою додовання невід’ємних змінних.
Приклад 1. Записати в канонічній формі задачу ЛП:
Приклад 2. Записати в канонічній формі задачу ЛП:
Приклад 3. Записати в канонічній формі задачу ЛП:
В теоретичному плані всі задачі ЛП можна розглядати тільки як задачі на мінімум чи на максимум, змінивши знак цільової функції:
f(x)=c1x1 + c2x2 + c3x3 + …… +cnxn →max
z(x) = - f(x) = -( c1x1 + c2x2 + c3x3 + …… +cnxn) →min
Система обмежень (2) – (3) може бути сумісною або несумісною. Сумісна система обмежень визначає в n-вимірному векторному просторі область визначеності задачі, інакше, область існування планів задачі ЛП. Кожна крапка області означеності є планом задачі, а сама область є множиною планів задачі ЛП.
Формулювання задачі буде некоректним, якщо система обмежень задачі несумісна, суперечлива. Тоді множина планів задачі, не містить жодного плану, буде порожньою.
- Предмет математичного моделювання.
- Моделювання в економіці.
- 3. Класификація економіко – математичних моделей. Формальна класіфикація моделей.
- 4. Задачі планування та організації виробництва.
- 4.1. Задача про максимальну рентабельність підприємства.
- 4.2. Задача про завантаження обладнання.
- Питання для самоконтролю.
- Тема 1. Предмет, методи і завдання дисципліни. Класифікація задач. Лекція 2
- Задачі математичного програмування.
- 2. Класифікація методів математичного програмування.
- 3. Модель міжгалузевого балансу „Витрати - випуск”.
- Коефіціети прямих та побічних витрат.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 3 Тема лекції: Основні теореми та властивості задач лінійного програмування (лп).
- 1. Загальна форма задачі лінійного програмування (лп).
- 2. Форми запису загальної задачі лп.
- 3. Основні теореми та властивості задачі лп.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі зметодів її розв’язування Лекція 4 Тема лекції: Графічний метод розв’язування задач лп.
- 2. Графічний метод розв’язування задач лп з
- 3. Приклади розв’язування задач лп графічним методом.
- Питання для самоконтролю.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язання Лекція 5 Тема лекції: Розв’язання задач лп симплекс-методом.
- 1. Симплекс-метод із стандартним базисом.
- 2. Теоретичні основи симплекс-метода.
- 3. Поняття виродженності задач лп.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 6 Тема лекції: Розв’язання задач лп симплекс-методом (продовження)
- 4. Правило уникнення зациклювання при застосуванні симплекс-методу.
- 5. Метод штучної базиси розв’язування задач лп.
- 6. Приклад вирішення задачі лп методом штучної бази.
- Питання для самоконтролю.
- Тема 3. Транспортна задача. Лекція 7 Тема лекції: Транспортна задача
- 1 Економічна та математична моделі транспортної задачі.
- 2 Основні теореми транспортної задачі.
- 3. Метод північно-західного кута (діагональний.)
- Тема 3. Транспортна задача. Лекція 8 Тема лекції: Транспортна задача (продовження)
- 5. Метод потенціалів.
- 6. Приклад вирішення транспортної задачі.
- 7. Ускладнені задачі транспортного типу.
- Тема 3. Транспортна задача. Лекція 9 Тема лекції: Транспортна задача (продовження)
- Задача про призначення.
- Розподільчи задачі загального типу.
- Модель розподільчої задачі
- Етапи розв’язання розподільчої задачі
- Приклад вирішення задачі типу тз.
- Питання для самоконтролю.
- Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач. Лекція 10. Тема лекції: Двоїста задача лінійного програмування
- 1 Математичні моделі двоїстих задач.
- 3 Взаємозв’язок розв’язків прямої та двоїстої задач.
- Питання для самоконтролю.
- Тема 5. Цілочислові та параметричні задачі лінійного програмування
- Тема лекції: Узагальнення задачі лінійного програмування.
- Задачі цілочислового програмування.
- 2. Метод Гоморі.
- 3. Параметричне лінійне програмування.
- Питання для самоконтролю.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри
- 1. Постановка задач теорії парних ігор з нульовою сумою.
- Задачі з сідловою точкою. Задачі в чистих стратегіях.
- Ігри в мішаних стратегіях. Основна теорема теорії ігор.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри (продовження)
- 4. Графічний метод розв’язання теорії ігор.
- 5. Зведення задач теорії ігор до задач лп.
- Зведення задачі лп до матричної гри.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем
- Тема лекції: Задача дробово-лінійного програмування
- Постановка задачі дробово-лінійного програмування.
- 2. Приведення задачі дробово-лінійного програмування до задачі лінійного програмування.
- 3. Розв’янання задач дробово-лінійного програмування.
- 4. Графічне розв’язання задачі дробово-лінійного програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Задачі нелінійного програмування
- 1. Класичні методи розв’язання задач нелінійного програмування.
- 2. Метод множників Лагранжа.
- 3. Задачі опуклого програмування.
- Задачі опуклого програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Основні поняття теорії варіаційного числення
- Поняття про функціонал.
- 2. Екстремум функціоналу.
- 3. Класичні задачі варіаційного числення.
- 4. Варіація функції та приріст функціоналу.
- 5. Перша та друга варіації функціоналу.
- Питання для самоконтролю.