2. Класифікація методів математичного програмування.
В залежності від властивостей функцій f та gi математичне програмування можна розглядати як самостійну дисципліну, яка займається вивченням та розробкою методів рішення окремих класів задач.
На сам перед усі задачі МП можна поділити на задачі лінійного та нелінійного програмування. При цьому, якщо всі функції f та gi лінійні, то задача є задачею лінійного програмування (ЛП). Якщо ж хоча б одна з цих функцій не лінійна, то така задача є задачею не лінійного програмування (НЛП)
Засновником ЛП є радянський математик-економіст Л.В. Канторовіч. (1939 р. наукова праця „Математичні методи організації та планування виробництва”).
Через 10 років американський математик Дж. Данціг розробив ефективний спосіб рішення даного класу задач – симплекс-метод. Вперше термін ЛП з’явився в 1951 році в працях Дж. Данціга та Т. Купманса.
Однак, при вирішенні ряду задач з’являються зв’язки не лінійного характеру. Тому вслід за розробкою моделей ЛП почалися інтенсивні дослідження не лінійних моделей.
Якщо в задачі МП цільова функція або хоча б одна з функцій обмежень нелінійна , то такий розділ МП називаеться нелінійним програмуванням (НЛП).
Якщо на всі або на деякі змінні накледені умови дискретності, наприклад, цілочисельності, то такі задачі розглядаються в розділі МП, який називається дискретним, окремо цілочисельним програмуванням.
Якщо параметри цільової функції або системи обмежень змінюються у часі або сам процес прийняття рішення має багатокроковий характер, то такі задачі вирішуються методами динамічного програмування.
В усіх наведених раніше розділах МП інформація звісна та достовірна. Такі методи оптимізації звуться детермінованими або методами існування рішень в умовах визначеності.
Якщо параметри, які належать функції цілі, або обмежень задачі є випадковими, або приймати рішення необхідно в умовах ризиків, то говорять про проблеми стохастичної оптимізації, а розділ називається стохастичним програмуванням (СП). В першу чергу слід віднести методи та моделі прийняття рішень в умовах конфліктних ситуацій (математична теорія ігор), в умовах неповної інформації (експертні оцінки), в умовах ризику (статистичні рішення) та інші.
Пізніше з’явились інші типи задач, які враховують специфіку цільової функції та системи обмежень, в зв’язку з чим виникли параметричне, дробово-лінійне, комбінаторне та інші типи програмування.
У випадку нелінійностей специфіка задач породила квадратичне, біквадратичне, сепарабельне, випукле та інші типи програмування.
З’явились численні методи пошуку оптимальних рішень: градієнтні, штрафних та барьєрних функцій, можливих напрямків, випадкового пошуку та інші.
Відзначимо, що задачі МП з однією цільовою функцією вирішуються методами скалярної оптимізації. Однак, реальні випадки настільки складні, що вимушені враховувати декілька цільових функцій, котрі повинні приймати екстремальні значення. Наприклад, дати продукції більше, високого гатунку з мінімальними витратами. Задача, де знаходять рішення по кільком цільовим функціям, відносять до векторної оптимізації – це задачі багатокритеріальні.
- Предмет математичного моделювання.
- Моделювання в економіці.
- 3. Класификація економіко – математичних моделей. Формальна класіфикація моделей.
- 4. Задачі планування та організації виробництва.
- 4.1. Задача про максимальну рентабельність підприємства.
- 4.2. Задача про завантаження обладнання.
- Питання для самоконтролю.
- Тема 1. Предмет, методи і завдання дисципліни. Класифікація задач. Лекція 2
- Задачі математичного програмування.
- 2. Класифікація методів математичного програмування.
- 3. Модель міжгалузевого балансу „Витрати - випуск”.
- Коефіціети прямих та побічних витрат.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 3 Тема лекції: Основні теореми та властивості задач лінійного програмування (лп).
- 1. Загальна форма задачі лінійного програмування (лп).
- 2. Форми запису загальної задачі лп.
- 3. Основні теореми та властивості задачі лп.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі зметодів її розв’язування Лекція 4 Тема лекції: Графічний метод розв’язування задач лп.
- 2. Графічний метод розв’язування задач лп з
- 3. Приклади розв’язування задач лп графічним методом.
- Питання для самоконтролю.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язання Лекція 5 Тема лекції: Розв’язання задач лп симплекс-методом.
- 1. Симплекс-метод із стандартним базисом.
- 2. Теоретичні основи симплекс-метода.
- 3. Поняття виродженності задач лп.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 6 Тема лекції: Розв’язання задач лп симплекс-методом (продовження)
- 4. Правило уникнення зациклювання при застосуванні симплекс-методу.
- 5. Метод штучної базиси розв’язування задач лп.
- 6. Приклад вирішення задачі лп методом штучної бази.
- Питання для самоконтролю.
- Тема 3. Транспортна задача. Лекція 7 Тема лекції: Транспортна задача
- 1 Економічна та математична моделі транспортної задачі.
- 2 Основні теореми транспортної задачі.
- 3. Метод північно-західного кута (діагональний.)
- Тема 3. Транспортна задача. Лекція 8 Тема лекції: Транспортна задача (продовження)
- 5. Метод потенціалів.
- 6. Приклад вирішення транспортної задачі.
- 7. Ускладнені задачі транспортного типу.
- Тема 3. Транспортна задача. Лекція 9 Тема лекції: Транспортна задача (продовження)
- Задача про призначення.
- Розподільчи задачі загального типу.
- Модель розподільчої задачі
- Етапи розв’язання розподільчої задачі
- Приклад вирішення задачі типу тз.
- Питання для самоконтролю.
- Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач. Лекція 10. Тема лекції: Двоїста задача лінійного програмування
- 1 Математичні моделі двоїстих задач.
- 3 Взаємозв’язок розв’язків прямої та двоїстої задач.
- Питання для самоконтролю.
- Тема 5. Цілочислові та параметричні задачі лінійного програмування
- Тема лекції: Узагальнення задачі лінійного програмування.
- Задачі цілочислового програмування.
- 2. Метод Гоморі.
- 3. Параметричне лінійне програмування.
- Питання для самоконтролю.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри
- 1. Постановка задач теорії парних ігор з нульовою сумою.
- Задачі з сідловою точкою. Задачі в чистих стратегіях.
- Ігри в мішаних стратегіях. Основна теорема теорії ігор.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри (продовження)
- 4. Графічний метод розв’язання теорії ігор.
- 5. Зведення задач теорії ігор до задач лп.
- Зведення задачі лп до матричної гри.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем
- Тема лекції: Задача дробово-лінійного програмування
- Постановка задачі дробово-лінійного програмування.
- 2. Приведення задачі дробово-лінійного програмування до задачі лінійного програмування.
- 3. Розв’янання задач дробово-лінійного програмування.
- 4. Графічне розв’язання задачі дробово-лінійного програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Задачі нелінійного програмування
- 1. Класичні методи розв’язання задач нелінійного програмування.
- 2. Метод множників Лагранжа.
- 3. Задачі опуклого програмування.
- Задачі опуклого програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Основні поняття теорії варіаційного числення
- Поняття про функціонал.
- 2. Екстремум функціоналу.
- 3. Класичні задачі варіаційного числення.
- 4. Варіація функції та приріст функціоналу.
- 5. Перша та друга варіації функціоналу.
- Питання для самоконтролю.