logo
Опорний конспект ОММ 4 Ф

1. Постановка задач теорії парних ігор з нульовою сумою.

На практиці дуже часто виникають ситуації, коли необхідно приймати рішення в умовах невизначеності, тобто в умовах, коли дві або більш сторін мають на меті різні цілі, но результат для кожної із сторін залежить від дій супротивника. Наприклад, гра в шахи, шашки і т.д. В економіці конфліктні ситуації зустрічаються дуже часто: продавець і покупець, банк і клієнт, постачальник і споживач.

В 1944 році з’явилася математична дисципліна – теорія ігор, основою для якої стала монографія американського економіста Неймана.

Теорія ігор – це теорія математичної моделі конфліктних ситуацій, інтереси гравців котрих різні і кожний з них досягає своєї цілі (мети) різними шляхами.

Результат гри є виграшем для одних і програшем для других.

Означення 1. Модель любої конфліктної ситуації зветься грою.

Означення 2. В процесі гри кожний гравець висуває власну стратегію. Стратегія гравця – сукупність правил, по котрих при кожному ході відбувається вибір певних дій. Цей вибір залежить від сформованих обставин.

Означення 3. гра зветься парною, якщо в ній беруть участь дві сторони.

Означення 4. Кількісна оцінка результатів гри зветься платою.

Означення 5. Парна гра зветься грою з нульовою сумою, якщо програш одного є виграшем іншого.

Означення 6. Стратегія гравця називається оптимальною, якщо при повторенні гри вона забезпечує гравцю максимально можливий середній виграш (або теж само- мінімально можливий середній програш).