3. Задачі опуклого програмування.
Означення 1. Функція f(x1, x2,….. xn), що задана на опуклій множені Х, називається опуклою, якщо для будь – яких двох крапок Х1,Х2 є Х і довільного µє[0;1] виконується співвідношення:
f(µX1+(1-µ) X2) ≤ µ f(X1) +(1-µ) f(X2)
Означення 2. Функція f(x1, x2,….. xn), що задана на опуклій множині Х, називається вгнутою, якщо для будь яких двох крапок Х1,Х2 є Х і довільного µє[0;1] виконується співвідношення
f(µX1+(1-µ) X2) ≥ µ f(X1) +(1-µ) f(X2).
Якщо f(x1, x2,….. xn) – опукла, то - f(x1, x2,….. xn) – вгнута.
Загальна постановка задачі опуклого програмування:
Z=f(x1, x2,….. xn) →max (6)
за умов
gi(x1, x2,….. xn) ≤bi, i=1,2…..m (7)
xj ≥0 j=1,2,…..n (8)
де f – вгнута і gi - опуклі функції
Надалі припустимо, що ОДР задачі (6) – (8) не порожня й обмежена.
Теорема 3. Довільний локальний максимум (мінімум) задачі опуклого програмування є глобальним максимумом (мінімумом).
Означення 3. Говорять, що множина ОДР задовольняє умову регулярності, якщо існує хоча б одна крапка
Означення 4. Говорять, що множина допустимих планів (6) – (8) задовольняє умові регулярності, якщо існує хоча б одна крапка х i з області допустимих розв’язків така, що gi(xi)<bi (i=1,2,….m).
Означення 5. Крапка (Х*,Λ*) називається сідловою крапкою функції Лагранжа, якщо L(Х,Λ*) ≤L(Х*,Λ*)≤L(Х*,Λ) для всіх xj ≥0 (j=1,2,…n) і λi≥0 (i=1,2,….m).
Теорема 4. (Куна-Такера). Нехай для ОДР задачі опуклого програмування (6) – (8) виконується умова регулярності. План Х*буде оптимальним планом цієї задачі тоді і тільки тоді, коли існує такий вектор Λ*, λi≥0 (i=1,2,….m), що пара (Х*,Λ*) – сідлова крапка функції Лагранжа.
Зазначимо, що умови Куна-Такера мало придатні для знаходження оптимального розв’язку, вони лише характеризують розв’язок, тобто дають можливість перевірити деякий розв’язок на оптимальність.
-
Содержание
- Предмет математичного моделювання.
- Моделювання в економіці.
- 3. Класификація економіко – математичних моделей. Формальна класіфикація моделей.
- 4. Задачі планування та організації виробництва.
- 4.1. Задача про максимальну рентабельність підприємства.
- 4.2. Задача про завантаження обладнання.
- Питання для самоконтролю.
- Тема 1. Предмет, методи і завдання дисципліни. Класифікація задач. Лекція 2
- Задачі математичного програмування.
- 2. Класифікація методів математичного програмування.
- 3. Модель міжгалузевого балансу „Витрати - випуск”.
- Коефіціети прямих та побічних витрат.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 3 Тема лекції: Основні теореми та властивості задач лінійного програмування (лп).
- 1. Загальна форма задачі лінійного програмування (лп).
- 2. Форми запису загальної задачі лп.
- 3. Основні теореми та властивості задачі лп.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі зметодів її розв’язування Лекція 4 Тема лекції: Графічний метод розв’язування задач лп.
- 2. Графічний метод розв’язування задач лп з
- 3. Приклади розв’язування задач лп графічним методом.
- Питання для самоконтролю.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язання Лекція 5 Тема лекції: Розв’язання задач лп симплекс-методом.
- 1. Симплекс-метод із стандартним базисом.
- 2. Теоретичні основи симплекс-метода.
- 3. Поняття виродженності задач лп.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 6 Тема лекції: Розв’язання задач лп симплекс-методом (продовження)
- 4. Правило уникнення зациклювання при застосуванні симплекс-методу.
- 5. Метод штучної базиси розв’язування задач лп.
- 6. Приклад вирішення задачі лп методом штучної бази.
- Питання для самоконтролю.
- Тема 3. Транспортна задача. Лекція 7 Тема лекції: Транспортна задача
- 1 Економічна та математична моделі транспортної задачі.
- 2 Основні теореми транспортної задачі.
- 3. Метод північно-західного кута (діагональний.)
- Тема 3. Транспортна задача. Лекція 8 Тема лекції: Транспортна задача (продовження)
- 5. Метод потенціалів.
- 6. Приклад вирішення транспортної задачі.
- 7. Ускладнені задачі транспортного типу.
- Тема 3. Транспортна задача. Лекція 9 Тема лекції: Транспортна задача (продовження)
- Задача про призначення.
- Розподільчи задачі загального типу.
- Модель розподільчої задачі
- Етапи розв’язання розподільчої задачі
- Приклад вирішення задачі типу тз.
- Питання для самоконтролю.
- Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач. Лекція 10. Тема лекції: Двоїста задача лінійного програмування
- 1 Математичні моделі двоїстих задач.
- 3 Взаємозв’язок розв’язків прямої та двоїстої задач.
- Питання для самоконтролю.
- Тема 5. Цілочислові та параметричні задачі лінійного програмування
- Тема лекції: Узагальнення задачі лінійного програмування.
- Задачі цілочислового програмування.
- 2. Метод Гоморі.
- 3. Параметричне лінійне програмування.
- Питання для самоконтролю.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри
- 1. Постановка задач теорії парних ігор з нульовою сумою.
- Задачі з сідловою точкою. Задачі в чистих стратегіях.
- Ігри в мішаних стратегіях. Основна теорема теорії ігор.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри (продовження)
- 4. Графічний метод розв’язання теорії ігор.
- 5. Зведення задач теорії ігор до задач лп.
- Зведення задачі лп до матричної гри.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем
- Тема лекції: Задача дробово-лінійного програмування
- Постановка задачі дробово-лінійного програмування.
- 2. Приведення задачі дробово-лінійного програмування до задачі лінійного програмування.
- 3. Розв’янання задач дробово-лінійного програмування.
- 4. Графічне розв’язання задачі дробово-лінійного програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Задачі нелінійного програмування
- 1. Класичні методи розв’язання задач нелінійного програмування.
- 2. Метод множників Лагранжа.
- 3. Задачі опуклого програмування.
- Задачі опуклого програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Основні поняття теорії варіаційного числення
- Поняття про функціонал.
- 2. Екстремум функціоналу.
- 3. Класичні задачі варіаційного числення.
- 4. Варіація функції та приріст функціоналу.
- 5. Перша та друга варіації функціоналу.
- Питання для самоконтролю.