logo
Опорний конспект ОММ 4 Ф

5. Метод штучної базиси розв’язування задач лп.

Застосовується у тих випадках, коли в вихідній задачі ЛП, яка записана у канонічному вигляді, в системі обмежень немає необхідної кількості одиничних ортогональних незалежних векторів Pj, тобто важко вказати початковий опорний план.

М-метод полягає у використанні правил симплекс – методу до так званої задачі ЛП. Вона отримується із початкової додованням до лівої частини системи рівнянь таких штучних одиничних векторів з відповідними невід’ємними штучними змінними, щоб знову отримати m одиничних ортогональних лінійно незалежних векторів.

У цільовій функції задачі ЛП штучні змінні мають коефіцієнт - М (f(x)→max) або +М (f(x)→min), де під М ми розуміємо досить велике додатне число.

При розв’язанні цієї задачі симплекс-методом оцінки Δj будуть залежити від М. Для порівняння оцінок, треба пам’ятати, що М – достатньо велике додатне число, тому із базису будуть виключатися у першу чергу штучні вектори.

Якщо із базису всі штучні вектори вийшли, то ми отримали вихідну задачу.

Якщо оптимальний розв’язок М – задачі містить штучні змінні або М – задача нерозв’язна, то початкова задача також нерозв’язна.