3 Взаємозв’язок розв’язків прямої та двоїстої задач.
Розглянемо пару двоїстих задач ЛП (1) – (3) і (1)* - (3)*, пряма задача якої записана у канонічному вигляді. Наступна теорема встановлює взаємозв’язок між розв’язками прямої і двоїстої задачами.
Теорема 3. Якщо пряма задача ЛП має оптимальний план Х*, отриманий симплекс методом, то оптимальний план Y* двоїстої задачі визначається за формулою:
Y*=CбазР-1 (4)
де Cбаз – вектор рядок, що складається з коефіцієнтів цільової функції прямої задачі при невідомих, які є базисними в оптимальному плані; Р-1 – матриця, обернена до матриці Р, складеної з компонент базисних векторів оптимального плану задачі.
Таким чином, якщо знайти симплекс методом оптимальний план задачі (1) –(3), то використовуючи останню симплекс таблицю, можна визначити Cбаз і Р-1 та за допомогою співвідношення (5.4), знайти план двоїстої задачі.
Відмітимо, що існує взаємно-однозначна відповідність між змінними: основним змінним прямої задачі відповідають додаткові змінні двоїстої задачі і навпаки:
Змінні прямої задачі | |||||||
Основні | Додаткові | ||||||
Х1 | Х2 | …….. | Хк | Хк+1 | Хк+2 | ………. | Хn |
Yn-k+1 | Yn-k+2 | …….. | Yn | Y1 | Y2 | ……… | Yn-k |
Додаткові | Основні | ||||||
Змінні двоїстої задачі |
Ідея двоїстого симплексного методу полягає у зв’язку між розв’язуваннями прямої та двоїстої задач ЛП. Немає потреби окремо розв’язувати пряму задачу, а окремо двоїсту, оскільки розв’язок обох задач можна знайти за одними й тими самими симплекс таблицями, пам’ятаючи, що невідомим прямої задачі відповідають стовпчики таблиці, а невідомим другої – рядки таблиці.
Двоїстий симплекс метод використовується для знаходження розв’язку задачі ЛП, записаної у канонічному вигляді, для якої серед векторів Рj, складених з коефіцієнтів при невідомих у системі рівнянь, є рівно m одиничних.
Також цей метод можна використовувати для знаходження розв’язку задач ЛП, коли вільні члени системи рівнянь є довільними числами (для розв’язування задач симплекс методом числа bi припускались невід’ємними).
- Предмет математичного моделювання.
- Моделювання в економіці.
- 3. Класификація економіко – математичних моделей. Формальна класіфикація моделей.
- 4. Задачі планування та організації виробництва.
- 4.1. Задача про максимальну рентабельність підприємства.
- 4.2. Задача про завантаження обладнання.
- Питання для самоконтролю.
- Тема 1. Предмет, методи і завдання дисципліни. Класифікація задач. Лекція 2
- Задачі математичного програмування.
- 2. Класифікація методів математичного програмування.
- 3. Модель міжгалузевого балансу „Витрати - випуск”.
- Коефіціети прямих та побічних витрат.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 3 Тема лекції: Основні теореми та властивості задач лінійного програмування (лп).
- 1. Загальна форма задачі лінійного програмування (лп).
- 2. Форми запису загальної задачі лп.
- 3. Основні теореми та властивості задачі лп.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі зметодів її розв’язування Лекція 4 Тема лекції: Графічний метод розв’язування задач лп.
- 2. Графічний метод розв’язування задач лп з
- 3. Приклади розв’язування задач лп графічним методом.
- Питання для самоконтролю.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язання Лекція 5 Тема лекції: Розв’язання задач лп симплекс-методом.
- 1. Симплекс-метод із стандартним базисом.
- 2. Теоретичні основи симплекс-метода.
- 3. Поняття виродженності задач лп.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 6 Тема лекції: Розв’язання задач лп симплекс-методом (продовження)
- 4. Правило уникнення зациклювання при застосуванні симплекс-методу.
- 5. Метод штучної базиси розв’язування задач лп.
- 6. Приклад вирішення задачі лп методом штучної бази.
- Питання для самоконтролю.
- Тема 3. Транспортна задача. Лекція 7 Тема лекції: Транспортна задача
- 1 Економічна та математична моделі транспортної задачі.
- 2 Основні теореми транспортної задачі.
- 3. Метод північно-західного кута (діагональний.)
- Тема 3. Транспортна задача. Лекція 8 Тема лекції: Транспортна задача (продовження)
- 5. Метод потенціалів.
- 6. Приклад вирішення транспортної задачі.
- 7. Ускладнені задачі транспортного типу.
- Тема 3. Транспортна задача. Лекція 9 Тема лекції: Транспортна задача (продовження)
- Задача про призначення.
- Розподільчи задачі загального типу.
- Модель розподільчої задачі
- Етапи розв’язання розподільчої задачі
- Приклад вирішення задачі типу тз.
- Питання для самоконтролю.
- Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач. Лекція 10. Тема лекції: Двоїста задача лінійного програмування
- 1 Математичні моделі двоїстих задач.
- 3 Взаємозв’язок розв’язків прямої та двоїстої задач.
- Питання для самоконтролю.
- Тема 5. Цілочислові та параметричні задачі лінійного програмування
- Тема лекції: Узагальнення задачі лінійного програмування.
- Задачі цілочислового програмування.
- 2. Метод Гоморі.
- 3. Параметричне лінійне програмування.
- Питання для самоконтролю.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри
- 1. Постановка задач теорії парних ігор з нульовою сумою.
- Задачі з сідловою точкою. Задачі в чистих стратегіях.
- Ігри в мішаних стратегіях. Основна теорема теорії ігор.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри (продовження)
- 4. Графічний метод розв’язання теорії ігор.
- 5. Зведення задач теорії ігор до задач лп.
- Зведення задачі лп до матричної гри.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем
- Тема лекції: Задача дробово-лінійного програмування
- Постановка задачі дробово-лінійного програмування.
- 2. Приведення задачі дробово-лінійного програмування до задачі лінійного програмування.
- 3. Розв’янання задач дробово-лінійного програмування.
- 4. Графічне розв’язання задачі дробово-лінійного програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Задачі нелінійного програмування
- 1. Класичні методи розв’язання задач нелінійного програмування.
- 2. Метод множників Лагранжа.
- 3. Задачі опуклого програмування.
- Задачі опуклого програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Основні поняття теорії варіаційного числення
- Поняття про функціонал.
- 2. Екстремум функціоналу.
- 3. Класичні задачі варіаційного числення.
- 4. Варіація функції та приріст функціоналу.
- 5. Перша та друга варіації функціоналу.
- Питання для самоконтролю.