42.Умова сталості та умова монотонності функції.
Моното́нна фу́нкція — це функція, приріст якої не змінює знаку, тобто завжди або невід’ємний, або недодатній. Якщо при цьому приріст ще і не дорівнює нулю, то функція називається стро́го моното́нною.
Приклад незростаючої функції
Нехай дано функцію Тоді
функція називаєтьсязроста́ючою на , якщо
.
функція називаєтьсястро́го зроста́ючою на , якщо
.
функція називаєтьсяспадною на , якщо
.
функція називаєтьсястро́го спадною на , якщо
.
45.Застосування похідних вищих порядків до дослідження на екстремуми. якщо в точці x0 існує не тільки 1 похідна, яка рівна 0, але й похідні вищих порядків, то керуємося правилами: 1. якщо перша із похідних яка перетв в 0 в точці x0 є похідною непарного порядку, ф-ція в точці x0 екстему немає 2. якщо парного порядку, то маємо максимум, якщо відємного – мінімум
46. Найбільше та найменше значення функції Нехай дано функцію, яка неперервна на відрізку [a;b], диференційована в інтервалі (a;b), за винятком можливо скінченого числа точок, де вона не існує. Необхідно ж знайти найбільше та найменше значення функції на цьому відрізку. А як відомо з математичного аналізу, функція, яка неперервна на відрізку, набуває на ньому свого найбільшого і найменшого значення. Щоб знайти найбільше і найменше значення функції на відрізку необхідно:
1. знайти критичні точки в інтервалі (a;b) (точки, в яких похідна дорівнює нулю або не існує), обчислити значення функції в цих точках;
2. м значення функції на кінцях відрізка, тобто;
3. серед усіх значень вибрати найбільше і найменше значення.
У випадку, коли функція монотонна на відрізку [a;b], то найбільшого і найменшого значення вона досягає на кінцях відрізка. У цьому випадку обмежуємось обчисленням значень . По-іншому складається ситуація, якщо необхідно знайти найбільше та найменше значення функції, неперервної в інтервалі (a;b). Зрозуміло, що функція у цьому випадку не може досягати найбільшого і найменшого значення на кінцях інтервалу. Наприклад, функція в інтервалі (3;6) не має ні найбільшого, ні найменшого значення у внутрішніх точках інтервалу. У цьому випадку чинять так:
1.знаходять критичні точки, що належать цьому інтервалу, і обчислюють значення функції в цих точках;
2. знаходять ліву та праву границі відповідно в точках а і b , тобто . Якщо ці границі існують, то їх порівнюють із значеннями функції в критичних точках. Якщо виявиться, що значення в критичних точках більші(менші) за знайдені границі, то це і буде найбільшим(найменшим) значенням функції на інтервалі.
- 1.Множини та дії над ними
- 1.Задання множини за допомогою переліку її елементів.
- 1.Доповнення та різниця множин
- 2. Властивості дійсних чисел. Модуль дійсного числа.
- 5. Найпростіші теореми про границю змінної.
- 6. Граничний перехід в рівностях та нерівностях.
- 9. Границя монотонної варіанти число е.
- 13. Означення границі функції на мові послідовностей та на мові «ε-δ».
- 18. Точки розриву та їх класифікація.
- 30.Означення диференціала. Основні правила диференціювання.
- 33.Означення похідних вищих порядків. Формули похідних вищих порядків для основних елементарних функцій.
- 34 Диференціали вищих порядків
- 37.Формула Тейлора для основних елементарних функцій.
- 38.Різні форми залишкового члена у формулі Тейлора.
- 41.Розкриття невизначеностей.
- 42.Умова сталості та умова монотонності функції.
- 48. Асимптоти графіка функції.