Решение уравнений с параметром
Предположим, что нужно решать уравнение многократно при изменении одного из параметров этого уравнения. Например, пусть требуется решить уравнение для нескольких различных значений параметра a. Самый простой способ состоит в определении функции
f( a, x) := root(ex - a x2, x)
Чтобы решить уравнение для конкретного значения параметра a, присвойте значение параметру a и начальное значение переменной x как аргументам этой функции. Затем найдите искомое значение корня, вводя выражение f(a,x)=.
Рисунок 2 показывает пример того, как такая функция может использоваться для нахождения корней исследуемого уравнения при различных значениях параметра. Обратите внимание, что, хотя начальное значение x непосредственно входит в определение функции, нет необходимости определять его в другом месте рабочего документа.
Рисунок 2: Определение функции пользователя с функцией root.
- Буквенные индексы
- Ниже приводится полный список предопределенных переменных Mathcad и их значений по умолчанию:
- Используемые числа
- Специальные операции над комплексными числами
- Многозначные функции
- Создание вектора
- Создание матрицы
- Изменение размера матрицы
- Нижние индексы и элементы вектора
- Изменение способа отображения массивов
- Графическое представление матриц
- Ограничение входных массивов
- Ограничение отображаемых массивов
- Ограничение размеров массива
- Размеры и диапазон значений массива
- Специальные типы матриц
- Специальные характеристики матрицы
- Формирование новых матриц из существующих
- Собственные значения и собственные векторы
- Разложения
- Решение линейной системы уравнений
- Определение составного массива
- Отображение составных массивов
- Операторы и функции для составных массивов
- Определение и использование дискретного аргумента
- Многократные вычисления по дискретному аргументу
- Множественные дискретные аргументы и двойные индексы
- Рекурсивные вычисления с несколькими переменными
- Рекурсивные вычисления с вектором
- Советы по набору операторов
- Переменный верхний предел суммирования
- Оператор суммирования элементов вектора
- Производные более высокого порядка
- Переменные пределы интегрирования
- Изменение точности вычисления интегралов
- Криволинейные и двойные интегралы
- Определение пользовательского оператора
- Использование пользовательского оператора
- Запись функций как операторов
- Тригонометрические функции и обратные им.
- Гиперболические функции
- Логарифмические и показательные функции
- Функции Бесселя
- Специальные функции
- Введение в дискретное преобразование Фурье
- Функция if
- Циклы “while”
- Оператор “break”
- Циклы “for”
- Подпрограммы
- Рекурсия
- Что делать, когда функция root не сходится
- Некоторые советы по использованию функции root
- Решение уравнений с параметром
- Нахождение корней полинома
- Как использовать найденное решение
- Что делать, когда Mathcad не может найти решения
- Что делать, когда имеется слишком мало ограничений
- Многократное решение уравнений
- Решение одинаковых задач относительно разных переменных
- Приближенные решения
- Использование символьного решения уравнений
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения второго порядка
- Уравнения более высокого порядка
- Системы оду первого порядка
- Системы дифференциальных уравнений более высокого порядка
- Гладкие системы
- Медленно изменяющиеся решения
- Нахождение приближенного решения только в конечной точке
- Двухточечные краевые задачи
- Дифференциальные уравнения с частными производными