Приближенные решения
Mathcad содержит функцию, очень похожую на функцию Find. Она называется Minerr. Функция Minerr использует тот же самый алгоритм, что и функция Find. Различие состоит в следующем. Если в результате поиска решения не может быть получено дальнейшее уточнение текущего приближения к решению, Minerr возвращает это приближение. Функция Find, в отличие от функции Minerr, возвращает в этом случае сообщение об ошибке “решение не найдено”. Правила использования функции Minerr такие же, как и функции Find.
Minerr (z1, z2, z3, . . .) | Возвращает решение системы уравнений. Число аргументов равно числу неизвестных. |
Minerr обычно возвращает ответ, который минимизирует соответствующий функционал невязки (см. Приложение D), связанный с решаемой задачей. Однако Minerr не может проверить, реализует ли ответ абсолютный минимум для функционала невязки. Если функция Minerr используется в блоке решения уравнений, необходимо всегда включать дополнительную проверку достоверности получаемых результатов. Встроенная переменная ERR дает величину невязки для приближенного решения.ERR variable. Mathcad не имеет встроенной переменной для покомпонентного вывода вектора невязки на найденном приближенном решении.
Minerr часто используется для решения некоторых задач регрессии. На Рисунке 19 приведен пример, в котором функция Minerr используется, чтобы определить неизвестные параметры в распределении Вейбулла. Функция genfit также полезна для решения задач регрессии.
Рисунок 19: Использование функции minerr для решения задачи регрессии.
- Буквенные индексы
- Ниже приводится полный список предопределенных переменных Mathcad и их значений по умолчанию:
- Используемые числа
- Специальные операции над комплексными числами
- Многозначные функции
- Создание вектора
- Создание матрицы
- Изменение размера матрицы
- Нижние индексы и элементы вектора
- Изменение способа отображения массивов
- Графическое представление матриц
- Ограничение входных массивов
- Ограничение отображаемых массивов
- Ограничение размеров массива
- Размеры и диапазон значений массива
- Специальные типы матриц
- Специальные характеристики матрицы
- Формирование новых матриц из существующих
- Собственные значения и собственные векторы
- Разложения
- Решение линейной системы уравнений
- Определение составного массива
- Отображение составных массивов
- Операторы и функции для составных массивов
- Определение и использование дискретного аргумента
- Многократные вычисления по дискретному аргументу
- Множественные дискретные аргументы и двойные индексы
- Рекурсивные вычисления с несколькими переменными
- Рекурсивные вычисления с вектором
- Советы по набору операторов
- Переменный верхний предел суммирования
- Оператор суммирования элементов вектора
- Производные более высокого порядка
- Переменные пределы интегрирования
- Изменение точности вычисления интегралов
- Криволинейные и двойные интегралы
- Определение пользовательского оператора
- Использование пользовательского оператора
- Запись функций как операторов
- Тригонометрические функции и обратные им.
- Гиперболические функции
- Логарифмические и показательные функции
- Функции Бесселя
- Специальные функции
- Введение в дискретное преобразование Фурье
- Функция if
- Циклы “while”
- Оператор “break”
- Циклы “for”
- Подпрограммы
- Рекурсия
- Что делать, когда функция root не сходится
- Некоторые советы по использованию функции root
- Решение уравнений с параметром
- Нахождение корней полинома
- Как использовать найденное решение
- Что делать, когда Mathcad не может найти решения
- Что делать, когда имеется слишком мало ограничений
- Многократное решение уравнений
- Решение одинаковых задач относительно разных переменных
- Приближенные решения
- Использование символьного решения уравнений
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения второго порядка
- Уравнения более высокого порядка
- Системы оду первого порядка
- Системы дифференциальных уравнений более высокого порядка
- Гладкие системы
- Медленно изменяющиеся решения
- Нахождение приближенного решения только в конечной точке
- Двухточечные краевые задачи
- Дифференциальные уравнения с частными производными