Что делать, когда имеется слишком мало ограничений
Если количество ограничений меньше, чем количество переменных, Mathcad вообще не может выполнить блок решения уравнений. Mathcad помечает в этом случае функцию Find сообщением об ошибке “слишком мало ограничений”.
Задача, аналогичная той, которая приведена на Рисунке 12, называется недоопределенной. Ограничений в ней меньше, чем переменных. Поэтому ограничения не содержат достаточной информации для поиска решения. Поскольку функция Find имеет пять аргументов, Mathcad определяет, что требуется решить два уравнения с пятью неизвестными. Вообще говоря, такая задача обычно имеет бесконечное число решений.
При использовании блока решения уравнений в Mathcad необходимо задать количество уравнений по крайней мере не меньшее, чем число искомых неизвестных. Если зафиксировать значения некоторых переменных, удастся решить уравнения относительно оставшихся переменных. На Рисунке 13 показано, как, зафиксировав часть переменных, решить недоопределенную задачу из Рисунка 12. Поскольку функция Find содержит только два аргумента, z и w, Mathcad определяет переменные x, y и v как имеющие фиксированные значения 10, 50 и 0 соответственно. Блок решения уравнений становится в этом случае корректно определенным, потому что теперь имеются только две неизвестных, z и w, и два уравнения.
Рисунок 12: Функция Find имеет пять аргументов, поэтому Mathcad определяет, что требуется решить два уравнения с пятью неизвестными.
Рисунок 13: Проблема может быть решена, если уменьшить количество аргументов функции Find.
Этот раздел содержит некоторые советы по поводу эффективного использования процедур Mathcad, предназначенных для решения систем уравнений. Описана техника решения уравнений, содержащих параметр.
- Буквенные индексы
- Ниже приводится полный список предопределенных переменных Mathcad и их значений по умолчанию:
- Используемые числа
- Специальные операции над комплексными числами
- Многозначные функции
- Создание вектора
- Создание матрицы
- Изменение размера матрицы
- Нижние индексы и элементы вектора
- Изменение способа отображения массивов
- Графическое представление матриц
- Ограничение входных массивов
- Ограничение отображаемых массивов
- Ограничение размеров массива
- Размеры и диапазон значений массива
- Специальные типы матриц
- Специальные характеристики матрицы
- Формирование новых матриц из существующих
- Собственные значения и собственные векторы
- Разложения
- Решение линейной системы уравнений
- Определение составного массива
- Отображение составных массивов
- Операторы и функции для составных массивов
- Определение и использование дискретного аргумента
- Многократные вычисления по дискретному аргументу
- Множественные дискретные аргументы и двойные индексы
- Рекурсивные вычисления с несколькими переменными
- Рекурсивные вычисления с вектором
- Советы по набору операторов
- Переменный верхний предел суммирования
- Оператор суммирования элементов вектора
- Производные более высокого порядка
- Переменные пределы интегрирования
- Изменение точности вычисления интегралов
- Криволинейные и двойные интегралы
- Определение пользовательского оператора
- Использование пользовательского оператора
- Запись функций как операторов
- Тригонометрические функции и обратные им.
- Гиперболические функции
- Логарифмические и показательные функции
- Функции Бесселя
- Специальные функции
- Введение в дискретное преобразование Фурье
- Функция if
- Циклы “while”
- Оператор “break”
- Циклы “for”
- Подпрограммы
- Рекурсия
- Что делать, когда функция root не сходится
- Некоторые советы по использованию функции root
- Решение уравнений с параметром
- Нахождение корней полинома
- Как использовать найденное решение
- Что делать, когда Mathcad не может найти решения
- Что делать, когда имеется слишком мало ограничений
- Многократное решение уравнений
- Решение одинаковых задач относительно разных переменных
- Приближенные решения
- Использование символьного решения уравнений
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения второго порядка
- Уравнения более высокого порядка
- Системы оду первого порядка
- Системы дифференциальных уравнений более высокого порядка
- Гладкие системы
- Медленно изменяющиеся решения
- Нахождение приближенного решения только в конечной точке
- Двухточечные краевые задачи
- Дифференциальные уравнения с частными производными