logo search
Untitled2

§16.Прямая в пространстве.

Наиболее простым заданием прямой в пространстве является ее задание, как линии пересечения двух плоскостей: .

(Естественно предполагать, что плоскости не совпадают и не параллельны)

Однако, такое задание имеет большой недостаток: оно не содержит в явном виде ни одной геометрической характеристики прямой. Удобнее пользоваться каноническимуравнением прямой, в котором она определяется как геометрическое место концов векторов, имеющих общее начало и коллинеарных данному ненулевому вектору − направляющему вектору прямой.

Если обозначить любую фиксированную точку прямой через М0, а направляющий вектор, то для произвольной точки прямойМполучим соотношение:

каноническоеуравнение прямой в пространстве. (См. §4,п.III)

Замечание. На самом деле, каноническое уравнение представляет собой систему двух линейных уравнений с тремя переменными, т.е. линию пересечения двух плоскостей. Но, во – первых, это

особые плоскости (параллельные координатным осям) и, во – вторых, в записи системы геометрические характеристики прямой фигурируют в явном виде.

Пример. Перейти к каноническому заданию:

{Положим z= 0. Тогдаx=2,y= − 1;. Отсюда:}

От канонического уравнения легко перейти к параметрическому заданию. Приравняем полученную пропорцию к новой переменной и выразим через нее переменные x,yиz:

Пример. Найти точку пересечения прямойс плоскостьюxy+2z– 11 = 0.

{x = 1 + 2t, y = −3t, z = −2 + t → 7t − 14 = 0 → t = 2 → (5, −6, 0) }

Уравнение прямой через две точки можно написать, взяв в качестве направляющего вектора вектор :

(#) В некоторых задачах удобно пользоваться векторным представлением прямой. В этом случае прямая задается радиус – вектором (§1) текущей точки прямой.

(рис.9)

Здесь :

M r0− радиус – вектор т.М0

M0l= (p,q,r) − направляющий вектор прямой.

рис.9