§20. Проекция линии пересечения двух поверхностей на координатную плоскость.
Одной из важнейших задач исследования взаимного расположения двух поверхностей является определение линии их пересечения. Формально, линия пересечения записывается как система двух уравнений с тремя переменными (см. §12 и §16): . Для анализа линии пересечения исключим в данной системе одну из переменных, напримерz. В результате получится одно уравнение с двумя неизвестными:f(x,y) = 0, которое можно воспринимать как кривую на плоскостиXOY. Любой точке этой кривой (x*,y*) , будет соответствовать некоторое
значение z*, при котором точка (x*,y*,z*) принадлежит линии пересечения поверхностей. Следовательно, прямая параллельная осиOZ, проходящая через точку линии пересечения поверхностей, на плоскостиXOYпересекает кривуюf(x,y) = 0. Множество таких прямых образуют цилиндр с направляющейf(x,y) = 0 в плоскостиXOYи образующей параллельной осиOZ (§18). Таким образом, доказано следующее утверждение:
Если исключить одну из переменных из уравнений двух поверхностей, то получится уравнениепроекции линии пересечения этих поверхностейна координатную плоскость двух оставшихся переменных.
Пример. Найти проекцию линии пересечения поверхностейина
плоскость YOZ. {Исключимх:гипербола. Из уравнения первой поверхности (круговой цилиндр) следует, чтоверхняя ветвь,}
- Глава I. Векторная алгебра.
- §1.Векторы в пространстве. Основные определения.
- §2.Линейные операции над векторами.
- I. Сложение векторов.
- II. Умножение вектора на число.
- §3. Проекция вектора на ось.
- §4.Линейно зависимые и линейно независимые системы векторов.
- §5. Базис. Координаты. Размерность.
- §6. Скалярное произведение.
- §7. Скалярное произведение в координатной форме.
- §8.Направляющие косинусы вектора.
- §9. Ориентация базиса в пространстве.
- §10.Векторное произведение.
- §11. Смешанное произведение трех векторов.
- Глава II. Аналитическая геометрия на плоскости и в пространстве.
- §1.Декартова система координат.
- §2. Простейшие задачи аналитической геометрии.
- §2.Аналитическая геометрия на плоскости.
- §3.Прямая на плоскости.
- §4. Специальные виды уравнения прямой.
- §5. Основные задачи, связанные с прямой.
- §6.Алгебраические линии на плоскости.
- §7. Окружность.
- §8. Эллипс.
- §9. Гипербола.
- §10. Парабола.
- §11. Кривые второго порядка – заключение.
- §12.Аналитическая геометрия в пространстве.
- §13. Плоскость в пространстве.
- §14. Специальные случаи уравнения плоскости.
- §15.Основные задачи, связанные с плоскостью.
- §16.Прямая в пространстве.
- §17. Основные задачи.
- §18. Поверхности в пространстве.
- §19.Поверхность вращения.
- §20. Проекция линии пересечения двух поверхностей на координатную плоскость.
- §21.Поверхности второго порядка. Исследование методом сечений.
- §22. Эллипсоид.
- §23. Гиперболоиды и конус.
- §24. Параболоиды.