Два недостатка аксиоматики д. Гильберта
Огромное значение аксиоматики Д. Гильберта для всей математики, и геометрии в частности, неоспоримо и продолжает исследоваться до сих пор. А о той роли, которую сыграли выделенные ниже два «недостатка» упоминается не часто.
Первым недостатком является «язык» аксиоматики. Дело в том, что часть формулируемых аксиом содержит понятия, обоснование которых проводится на уровне теорем существования, доказываемых из предыдущих аксиом. Например, формулировка аксиомы Паша требует понятия отрезка и существования его внутренних точек. Последнее приходится доказывать (см. теорему 4 в группе II Аксиом порядка). Далее, требование откладывания конгруэнтного угла с заданной стороны прямой в аксиоме 16 требует же доказательства существования двух сторон, на которые всякая прямая разбивает плоскость. Есть еще ряд замечаний, которые вместе с отмеченными выше двумя, приводят к вопросам о взаимной совместимости и зависимости аксиоматических требований и критериях проверки этих свойств.
Второй «недостаток» состоит в том, что описание отношений между основными геометрическими объектами – точками, прямыми и плоскостями, приведенное в аксиоматике Д. Гилберта, не может быть индуктивно перенесено на «мыслимые» свойства «мыслимых» же геометрических объектов размерности большее трех. Необходимость построения многомерной геометрии была продиктована задачами аналитической механики систем n–точек уже в XIX в. В XX в. модель многомерной геометрии возникла в экономических задачах линейного программирования и других задачах естествознания и социальной практики человека.
Для аксиоматического построения многомерной евклидовой геометрии потребовалось переосмыслить процесс арифметизации (введения координат) трехмерного евклидова пространства, связать этот процесс со структурой n–мерного векторного пространства. Начнем с изучения структуры векторного пространства на множестве обыкновенных направленных отрезков.
-
Содержание
- Глава I 9
- Глава I математический формализм
- О понятии действительных чисел
- Формализм натуральных чисел
- Операции, определяющие формирование множества рациональных чисел
- Вывод 1
- Вывод 2
- Замечание 1
- Аксиоматика рациональных чисел
- Определение 1
- Следствие
- Задачи, приводящие к расширению множества рациональных чисел
- Задача 1
- Задача 2
- Вывод 3
- Аксиоматизация множества действительных чисел
- Аксиома непрерывности Кантора.
- Аксиоматическое обоснование евклидовой геометрии
- О “Началах” Евклида
- Аксиоматика д. Гильберта(1862–1943)
- Группа 1. Аксиомы соединения
- Теорема 1
- Теорема 2
- Теорема 3
- Группа 2. Аксиомы порядка
- Определение
- Группа 3. Аксиомы конгруэнтности
- Теорема (о внешнем угле треугольника)
- Определение движения
- Замечание 1
- Вывод 1
- Вывод 2
- Группа 4. Аксиомы непрерывности
- Замечание 2
- Замечание 3
- Вывод 3
- Группа 5. Аксиома параллельности
- Замечание 4
- Два недостатка аксиоматики д. Гильберта
- Структура векторного пространства
- Модель направленных отрезков
- Сложение обладает свойствами:
- Свойства операции умножения:
- Определение
- Арифметическая модель векторного пространства
- Теорема размерности
- Вывод 1
- Вывод 2
- Вывод 3
- Аксиомы скалярного произведения векторов
- Следствие
- Следствие
- Вывод 4
- Определение
- Модель Вейля евклидовой геометрии
- Арифметизация трехмерного евклидова пространства
- Свойства операции откладывания вектора
- Определение
- Вывод 1
- Вывод 2
- Многомерное арифметическое евклидово пространство
- Вывод 3
- Замечание
- Следствие 1
- Основные факты в планиметрии Лобачевского
- 1. Сумма углов многоугольника в плоскости l2
- Следствие 2
- Вывод 3
- Глава II свойства аксиоматических систем
- Математические структуры и аксиоматические теории
- Понятие отношений между объектами
- Следствие 1
- Пример 1
- Определение
- Следствие 2
- Понятие математической структуры
- Определение
- Замечание 1
- Формальная и содержательная аксиоматики. Теории и структуры
- Рассмотрим пример
- Вывод 1
- Вывод 2
- Определение
- Изоморфизм
- Пример 1
- Пример 2
- Определение изоморфизма
- Вывод 3
- Вывод 1
- Независимость аксиоматической системы
- Независимость аксиомы параллельности
- Замечание 1
- Дедуктивная полнота и категоричность системы аксиом
- Определение (дедуктивной полноты)
- Определение (категоричности)
- Историческая роль V постулата Евклида в развитии оснований математики
- Анализ текстовых парадоксов
- Языковые свойства имен объектов
- Пример 1
- Пример 2
- Пример 3
- Проблема выразимости
- Понятие искусственного языка
- Понятие парадокса
- “Ахиллес и черепаха”
- Парадокс пустого множества
- Парадокс достижимости в натуральном ряде
- “Одно и то же, но по–разному”
- Пример 1
- Пример 2
- Заключение
- Обозначения.
- Литература