elem_mat_phil
Пример 1
Из 15 аксиом планиметрий Е2 и L2 удалим аксиомы параллельности. Оставшиеся 14 аксиом составляют Теорию абсолютной планиметрии. Эта теория не категорична, так как L2 не изоморфна R2. Эта теория дедуктивно не полна, т.к. аксиома параллельности не выводима из остальных аксиом.
Таким образом, одна и та же система аксиом абсолютной планиметрии в разных моделях имеет различные “визуальные” эффекты. Например, в плоскости L2, (см. §5) мы “видим” два равных треугольника по трем равным углам, а также две прямые, которые не параллельны и не пересекаются. Этого “увидеть” в плоскости R2 мы не можем.
Содержание
- Глава I 9
- Глава I математический формализм
- О понятии действительных чисел
- Формализм натуральных чисел
- Операции, определяющие формирование множества рациональных чисел
- Вывод 1
- Вывод 2
- Замечание 1
- Аксиоматика рациональных чисел
- Определение 1
- Следствие
- Задачи, приводящие к расширению множества рациональных чисел
- Задача 1
- Задача 2
- Вывод 3
- Аксиоматизация множества действительных чисел
- Аксиома непрерывности Кантора.
- Аксиоматическое обоснование евклидовой геометрии
- О “Началах” Евклида
- Аксиоматика д. Гильберта(1862–1943)
- Группа 1. Аксиомы соединения
- Теорема 1
- Теорема 2
- Теорема 3
- Группа 2. Аксиомы порядка
- Определение
- Группа 3. Аксиомы конгруэнтности
- Теорема (о внешнем угле треугольника)
- Определение движения
- Замечание 1
- Вывод 1
- Вывод 2
- Группа 4. Аксиомы непрерывности
- Замечание 2
- Замечание 3
- Вывод 3
- Группа 5. Аксиома параллельности
- Замечание 4
- Два недостатка аксиоматики д. Гильберта
- Структура векторного пространства
- Модель направленных отрезков
- Сложение обладает свойствами:
- Свойства операции умножения:
- Определение
- Арифметическая модель векторного пространства
- Теорема размерности
- Вывод 1
- Вывод 2
- Вывод 3
- Аксиомы скалярного произведения векторов
- Следствие
- Следствие
- Вывод 4
- Определение
- Модель Вейля евклидовой геометрии
- Арифметизация трехмерного евклидова пространства
- Свойства операции откладывания вектора
- Определение
- Вывод 1
- Вывод 2
- Многомерное арифметическое евклидово пространство
- Вывод 3
- Замечание
- Следствие 1
- Основные факты в планиметрии Лобачевского
- 1. Сумма углов многоугольника в плоскости l2
- Следствие 2
- Вывод 3
- Глава II свойства аксиоматических систем
- Математические структуры и аксиоматические теории
- Понятие отношений между объектами
- Следствие 1
- Пример 1
- Определение
- Следствие 2
- Понятие математической структуры
- Определение
- Замечание 1
- Формальная и содержательная аксиоматики. Теории и структуры
- Рассмотрим пример
- Вывод 1
- Вывод 2
- Определение
- Изоморфизм
- Пример 1
- Пример 2
- Определение изоморфизма
- Вывод 3
- Вывод 1
- Независимость аксиоматической системы
- Независимость аксиомы параллельности
- Замечание 1
- Дедуктивная полнота и категоричность системы аксиом
- Определение (дедуктивной полноты)
- Определение (категоричности)
- Историческая роль V постулата Евклида в развитии оснований математики
- Анализ текстовых парадоксов
- Языковые свойства имен объектов
- Пример 1
- Пример 2
- Пример 3
- Проблема выразимости
- Понятие искусственного языка
- Понятие парадокса
- “Ахиллес и черепаха”
- Парадокс пустого множества
- Парадокс достижимости в натуральном ряде
- “Одно и то же, но по–разному”
- Пример 1
- Пример 2
- Заключение
- Обозначения.
- Литература