Определение
Математической структурой называется система отношений Ð ={Ð1, …, Ðp}, заданная на базовых множествах M1,…, Mm посредством системы аксиом T={T1,…,Tn}.
Таким образом определенную математическую структуру будем обозначать = {T, Ð, M}. Для краткости эту структуру, соответствующую системе аксиом T, иногда будем обозначать .
Примеры
Указанные в начале пункта аксиоматики задают, соответственно, структуры: натуральных чисел, действительных чисел, векторных пространств, структуру геометрического евклидова пространства и структуру арифметического евклидова пространства.
Определение
Система всех утверждений, доказываемых логическим путем в структуре , называется аксиоматической теорией этой структуры. Аксиоматическую теорию структурыбудем обозначать символом.
Пример
Теорема о внешнем угле треугольника: внешний угол треугольника больше любого не смежного с ним угла треугольника является элементом теории структуры абсолютной планиметрии (геометрии плоскости, построенной в системе 14 аксиом планиметрии без аксиом параллельности).
Модель или реализация системы аксиом
Модель системы аксиом T представляет собой такую совокупность некоторых объектов и отношений между ними, для которой выполняются все требования системы аксиом T, [9, с. 117–118].
Модель или реализация системы аксиом T называется также моделью или реализацией как аксиоматической теории , так и структуры. Эту реализацию будем обозначатьR(T)=R(T, …,T).
Приведем примеры реализаций.
Модель линейного порядка Торальфа Сколема (см. п. 1.1 §1) является моделью, или реализацией, аксиоматики Пеано или структуры натурального ряда.
Множество действительных чисел является реализацией евклидовой прямой.
Арифметическая модель векторного пространства (см. п. 3.2 §3) является реализацией системы аксиом векторного пространства размерности три.
Арифметическая модель евклидова пространства (см. п. 4.1 §4) является реализацией как системы аксиом Гильберта, так и системы аксиом Вейля евклидовой геометрии.
Множество n–местных наборов чисел (x,…,x) является реализациейn–мерного арифметического евклидова пространства (см. п. 4.2 §4).
Модель Пуанкаре Lявляется реализацией планиметрии Лобачевского.
- Глава I 9
- Глава I математический формализм
- О понятии действительных чисел
- Формализм натуральных чисел
- Операции, определяющие формирование множества рациональных чисел
- Вывод 1
- Вывод 2
- Замечание 1
- Аксиоматика рациональных чисел
- Определение 1
- Следствие
- Задачи, приводящие к расширению множества рациональных чисел
- Задача 1
- Задача 2
- Вывод 3
- Аксиоматизация множества действительных чисел
- Аксиома непрерывности Кантора.
- Аксиоматическое обоснование евклидовой геометрии
- О “Началах” Евклида
- Аксиоматика д. Гильберта(1862–1943)
- Группа 1. Аксиомы соединения
- Теорема 1
- Теорема 2
- Теорема 3
- Группа 2. Аксиомы порядка
- Определение
- Группа 3. Аксиомы конгруэнтности
- Теорема (о внешнем угле треугольника)
- Определение движения
- Замечание 1
- Вывод 1
- Вывод 2
- Группа 4. Аксиомы непрерывности
- Замечание 2
- Замечание 3
- Вывод 3
- Группа 5. Аксиома параллельности
- Замечание 4
- Два недостатка аксиоматики д. Гильберта
- Структура векторного пространства
- Модель направленных отрезков
- Сложение обладает свойствами:
- Свойства операции умножения:
- Определение
- Арифметическая модель векторного пространства
- Теорема размерности
- Вывод 1
- Вывод 2
- Вывод 3
- Аксиомы скалярного произведения векторов
- Следствие
- Следствие
- Вывод 4
- Определение
- Модель Вейля евклидовой геометрии
- Арифметизация трехмерного евклидова пространства
- Свойства операции откладывания вектора
- Определение
- Вывод 1
- Вывод 2
- Многомерное арифметическое евклидово пространство
- Вывод 3
- Замечание
- Следствие 1
- Основные факты в планиметрии Лобачевского
- 1. Сумма углов многоугольника в плоскости l2
- Следствие 2
- Вывод 3
- Глава II свойства аксиоматических систем
- Математические структуры и аксиоматические теории
- Понятие отношений между объектами
- Следствие 1
- Пример 1
- Определение
- Следствие 2
- Понятие математической структуры
- Определение
- Замечание 1
- Формальная и содержательная аксиоматики. Теории и структуры
- Рассмотрим пример
- Вывод 1
- Вывод 2
- Определение
- Изоморфизм
- Пример 1
- Пример 2
- Определение изоморфизма
- Вывод 3
- Вывод 1
- Независимость аксиоматической системы
- Независимость аксиомы параллельности
- Замечание 1
- Дедуктивная полнота и категоричность системы аксиом
- Определение (дедуктивной полноты)
- Определение (категоричности)
- Историческая роль V постулата Евклида в развитии оснований математики
- Анализ текстовых парадоксов
- Языковые свойства имен объектов
- Пример 1
- Пример 2
- Пример 3
- Проблема выразимости
- Понятие искусственного языка
- Понятие парадокса
- “Ахиллес и черепаха”
- Парадокс пустого множества
- Парадокс достижимости в натуральном ряде
- “Одно и то же, но по–разному”
- Пример 1
- Пример 2
- Заключение
- Обозначения.
- Литература