Аксиома непрерывности Кантора.
16. Пусть элементы x,x,…,x,…,y,y,…,y,… удовлетворяют условиюx<x<…<x<…<y<…y<yи пусть для любого положительного элемента>0, начиная с некоторого номераn, выполняются условияy–x<,k=n,n+1, … . Тогда существует элементZтакой, что при всех значенияхnвыполняетсяx<Z<y.
То, что элемент Z, о котором говорится в этой аксиоме, является единственным, несложно доказать от противного.
Определение 2
Множество R называется множеством действительных чисел, а его элементы действительными числами, если они удовлетворяют всем тем же аксиомам 1–15, что и рациональные числа и, дополнительно, аксиоме непрерывности Кантора.
О представлении действительных чисел
Мы видели, что формирование аксиоматик множеств натуральных рациональных и действительных чисел связано с выполнением определенных операций над числами. Система записи или представления чисел связана и с другими задачами.
Задача 1
Построить символьную запись числа, в которой эффективно реализуются алгоритмы арифметических и алгебраических операций. Мы уже отмечали, что наиболее подходящей для этой цели является систематическая запись числа (десятичная, двоичная и др.)
Задача 2
Построить представление чисел, в котором иррациональные числа приближаются рациональными числами наилучшим образом. Рациональная дробь p/qприближает иррациональное числонаилучшим образом, если для любого рационального числаm/nсnqвыполняется равенство |–p/q| < |–m/n|.
Рассмотрим десятичные приближения. Пусть m=a,a, …,a– десятичное приближение с “k” знаками после запятой числа=a,a, …,a,a,… . Тогда погрешность этого приближения определяется разностью
|–m/n| = a/10+a/10+…<9/10(1+1/10+…) = 9/10
1/(1–1/10) = 1/101/n.
Для лучших приближений используется представление иррационального числа цепной дробью [6]. Если p/q– конечная цепная дробь, приближающая число, то ([6, с. 46]), |–p/q| < 1/q.
Таким образом, представление числа цепной дробью «более экономично», чем представление десятичной дробью.
Напомним, что до сих пор не найдены эффективные алгоритмы арифметических операций для представлений чисел в виде цепных дробей, ([6, с. 29–30]).
- Глава I 9
- Глава I математический формализм
- О понятии действительных чисел
- Формализм натуральных чисел
- Операции, определяющие формирование множества рациональных чисел
- Вывод 1
- Вывод 2
- Замечание 1
- Аксиоматика рациональных чисел
- Определение 1
- Следствие
- Задачи, приводящие к расширению множества рациональных чисел
- Задача 1
- Задача 2
- Вывод 3
- Аксиоматизация множества действительных чисел
- Аксиома непрерывности Кантора.
- Аксиоматическое обоснование евклидовой геометрии
- О “Началах” Евклида
- Аксиоматика д. Гильберта(1862–1943)
- Группа 1. Аксиомы соединения
- Теорема 1
- Теорема 2
- Теорема 3
- Группа 2. Аксиомы порядка
- Определение
- Группа 3. Аксиомы конгруэнтности
- Теорема (о внешнем угле треугольника)
- Определение движения
- Замечание 1
- Вывод 1
- Вывод 2
- Группа 4. Аксиомы непрерывности
- Замечание 2
- Замечание 3
- Вывод 3
- Группа 5. Аксиома параллельности
- Замечание 4
- Два недостатка аксиоматики д. Гильберта
- Структура векторного пространства
- Модель направленных отрезков
- Сложение обладает свойствами:
- Свойства операции умножения:
- Определение
- Арифметическая модель векторного пространства
- Теорема размерности
- Вывод 1
- Вывод 2
- Вывод 3
- Аксиомы скалярного произведения векторов
- Следствие
- Следствие
- Вывод 4
- Определение
- Модель Вейля евклидовой геометрии
- Арифметизация трехмерного евклидова пространства
- Свойства операции откладывания вектора
- Определение
- Вывод 1
- Вывод 2
- Многомерное арифметическое евклидово пространство
- Вывод 3
- Замечание
- Следствие 1
- Основные факты в планиметрии Лобачевского
- 1. Сумма углов многоугольника в плоскости l2
- Следствие 2
- Вывод 3
- Глава II свойства аксиоматических систем
- Математические структуры и аксиоматические теории
- Понятие отношений между объектами
- Следствие 1
- Пример 1
- Определение
- Следствие 2
- Понятие математической структуры
- Определение
- Замечание 1
- Формальная и содержательная аксиоматики. Теории и структуры
- Рассмотрим пример
- Вывод 1
- Вывод 2
- Определение
- Изоморфизм
- Пример 1
- Пример 2
- Определение изоморфизма
- Вывод 3
- Вывод 1
- Независимость аксиоматической системы
- Независимость аксиомы параллельности
- Замечание 1
- Дедуктивная полнота и категоричность системы аксиом
- Определение (дедуктивной полноты)
- Определение (категоричности)
- Историческая роль V постулата Евклида в развитии оснований математики
- Анализ текстовых парадоксов
- Языковые свойства имен объектов
- Пример 1
- Пример 2
- Пример 3
- Проблема выразимости
- Понятие искусственного языка
- Понятие парадокса
- “Ахиллес и черепаха”
- Парадокс пустого множества
- Парадокс достижимости в натуральном ряде
- “Одно и то же, но по–разному”
- Пример 1
- Пример 2
- Заключение
- Обозначения.
- Литература