Свойства операции откладывания вектора
Для всякой фиксированной точки A03 и произвольной точки B3 отображение
(1)
является взаимно однозначным отображением точекB3 на множество векторов .
(
0
Аксиома треугольников). Для любых трех точекA,B,C3 справедливо равенство
.
(Аксиома реализуемости операции откладывания). Существует хотя бы одна точка 03, для которой определена операция откладывания вектора для любой точки.
Точку в аксиоме 3 называют началом координат в евклидовом пространстве3, а вектор – радиус–вектором точкив этом пространстве. КоординатамиточкиM3 называют координаты радиус–вектора (рис. 7), где,,– направленные отрезки в3, соответствующие базисным векторам ,,векторного пространствапри отображении (1) с. Таким образом, по построению операции откладывания вектора в3 приходим к векторному равенству
. (2)
Это равенство, с учетом фиксированной точки 03, представляет взаимно однозначное соответствие между точками M3 и арифметическими упорядоченными тройками чисел и является определяющим равенством для координат точек евклидова пространства.
Для вычисления длин отрезков и углов между ними воспользуемся свойствами скалярного произведения (4), (6), (7), (8) из §3, а также свойством 1 операции откладывания отрезка.
Пусть требуется найти длину отрезка , если заданы координаты его концови. Учитывая, что, из формулы (8) § 3 находим длину
(3)
Пусть =(u1,v1,w1) и =(u2,v2,w2) – направленные отрезки в 3 и пусть их координаты (u1,v1,w1) (u1,v1,w1) в Е3. Тогда, используя формулы (4), (7) и (8) из §3, получаем формулу для косинуса угла между и
(4)
- Глава I 9
- Глава I математический формализм
- О понятии действительных чисел
- Формализм натуральных чисел
- Операции, определяющие формирование множества рациональных чисел
- Вывод 1
- Вывод 2
- Замечание 1
- Аксиоматика рациональных чисел
- Определение 1
- Следствие
- Задачи, приводящие к расширению множества рациональных чисел
- Задача 1
- Задача 2
- Вывод 3
- Аксиоматизация множества действительных чисел
- Аксиома непрерывности Кантора.
- Аксиоматическое обоснование евклидовой геометрии
- О “Началах” Евклида
- Аксиоматика д. Гильберта(1862–1943)
- Группа 1. Аксиомы соединения
- Теорема 1
- Теорема 2
- Теорема 3
- Группа 2. Аксиомы порядка
- Определение
- Группа 3. Аксиомы конгруэнтности
- Теорема (о внешнем угле треугольника)
- Определение движения
- Замечание 1
- Вывод 1
- Вывод 2
- Группа 4. Аксиомы непрерывности
- Замечание 2
- Замечание 3
- Вывод 3
- Группа 5. Аксиома параллельности
- Замечание 4
- Два недостатка аксиоматики д. Гильберта
- Структура векторного пространства
- Модель направленных отрезков
- Сложение обладает свойствами:
- Свойства операции умножения:
- Определение
- Арифметическая модель векторного пространства
- Теорема размерности
- Вывод 1
- Вывод 2
- Вывод 3
- Аксиомы скалярного произведения векторов
- Следствие
- Следствие
- Вывод 4
- Определение
- Модель Вейля евклидовой геометрии
- Арифметизация трехмерного евклидова пространства
- Свойства операции откладывания вектора
- Определение
- Вывод 1
- Вывод 2
- Многомерное арифметическое евклидово пространство
- Вывод 3
- Замечание
- Следствие 1
- Основные факты в планиметрии Лобачевского
- 1. Сумма углов многоугольника в плоскости l2
- Следствие 2
- Вывод 3
- Глава II свойства аксиоматических систем
- Математические структуры и аксиоматические теории
- Понятие отношений между объектами
- Следствие 1
- Пример 1
- Определение
- Следствие 2
- Понятие математической структуры
- Определение
- Замечание 1
- Формальная и содержательная аксиоматики. Теории и структуры
- Рассмотрим пример
- Вывод 1
- Вывод 2
- Определение
- Изоморфизм
- Пример 1
- Пример 2
- Определение изоморфизма
- Вывод 3
- Вывод 1
- Независимость аксиоматической системы
- Независимость аксиомы параллельности
- Замечание 1
- Дедуктивная полнота и категоричность системы аксиом
- Определение (дедуктивной полноты)
- Определение (категоричности)
- Историческая роль V постулата Евклида в развитии оснований математики
- Анализ текстовых парадоксов
- Языковые свойства имен объектов
- Пример 1
- Пример 2
- Пример 3
- Проблема выразимости
- Понятие искусственного языка
- Понятие парадокса
- “Ахиллес и черепаха”
- Парадокс пустого множества
- Парадокс достижимости в натуральном ряде
- “Одно и то же, но по–разному”
- Пример 1
- Пример 2
- Заключение
- Обозначения.
- Литература