logo search
mathcad

Множественные дискретные аргументы и двойные индексы

Если в формуле используется два дискретных аргумента, Mathcad пробегает через каждое значение каждого дискретного аргумента. Это можно использовать для определения матриц. Например, чтобы определить матрицу x размера 5x5, где xi,j = i + j, напечатайте формулы:

i:0;4 j:0;4 x[i,j:i+j

Обратите внимание, что не нужно печатать [Space], чтобы покинуть нижний индекс в этом случае. Напечатав : , Вы одновременно покидаете нижний индекс и создаете символ определения.

Рисунок 9 показывает результат печати вышеупомянутых формул. Обычно лучше всего отобразить матрицу в форме, показанной на Рисунке 9. Если вместо того, чтобы напечатать x=, записать x[i,j=, Mathcad отобразит одну длинную таблицу вывода с 25 числами. Такую таблицу часто трудно интерпретировать. Подобная проблема возникает, когда в графике используется пара дискретных аргументов.

Выражение для xi,j вычисляется для каждого значения каждого дискретного аргумента, всего 25 вычислений. Результат — матрица, показанная внизу рисунка, с 5 строками и 5 столбцами. Элемент в i-ой строке и j-ом столбце этой матрицы равен i + j.

Рисунок 9: Определение матрицы.

Обратите внимание, что, если два дискретных аргумента имеют значения m и n соответственно, формула, использующая оба дискретных аргумента, будет вычислятьcя m n раз. Если использовать два дискретных аргумента в таблице вывода, Mathcad покажет эти m n результата в длинной таблице с ячейкой для каждого результата. Если два дискретных аргумента используются в графике, Mathcad отобразит по одной точке для каждого из m n  результатов.

Рекурсивные вычисления применяются для решения конечно-разностных уравнений типа тех, которые возникают в задачах вычисления сложного процента, Марковских процессах и многих уравнениях фазовых состояний. Они могут также использоваться для получения приближенных решений для некоторых дифференциальных уравнений. В рекурсивных вычислениях определяется первый элемент массива и затем вычисляются последовательные элементы, основанные на первом элементе. Этот раздел описывает три типа рекурсивных вычислений: с одиночной переменной, с множественными переменными, и с вектором.

Рекурсивные вычисления с одной переменной

Классический метод для вычисления квадратных корней состоит в следующем:

.

Рисунок 10 показывает, как выполнить этот метод в Mathcad.

Рисунок 10: Использование рекурсивных вычислений для вычисления квадратного корня.

Характерные особенности этого примера:

Зависимость элементов массива от предварительно вычисленных элементов массива — та особенность, которая отличает рекурсивные вычисления от более простого многократного вычисления, обсужденного в предыдущем разделе.