Задачі математичного програмування.
Задачі математичного програмування – це задачі на знаходження екстремальних значень деяких функціональних залежностей.
Математичне програмування (МП) представляє собою математичну дисципліну, яка вивчає екстремальні задачі та займається розробкою методів їх вирішення.
В загальному вигляді математична постановка екстремальної задачі полягає в пошуку максимального або мінімального значення функції цілі f(x) при умовах gi(x)≤bi, дє f та gi – задані функції, а bi – деякі дійсні числа.
Функцію, екстремальне значення якої треба знайти в умовах економічних можливостей, називають функцією цілі, показником ефективності або критерієм оптимальності.
Економічні можливості формалізуються у вигляді системи обмежень. Всі ці умови складають математичну модель задачі.
Математична модель задачі – це відображення орігиналу у вигляді функцій, рівнянь, неріностей, цифр і т.п.
Математична модель задачі МП включає:
Сукупність незалежних величин Х = (х1,х2,х3…….хn) діючі на яку, систему можна змінити. Їх називають планом задачі (вектором управління, рішенням, стратегією)
Цільова функція (функція цілі, показник ефективності, критерій оптимальності, функціонал задачі). Цільова функція позволяє вибрати найкращий варіант з багатьох можливих. Найкращий варіант доставляє цільовій функції екстремальне значення. Це може бути прибуток, об’єм випуску або реалізації, витрати виробництва, рівень обслуговування або дефіциту, відходи та інші.
Умови (або система обмежень), накладені на невідомі величини. Ці умови випливають з обмежень ресурсів, якими володіє товариство в будь-який момент часу, з необхідності задовольнити поточні потреби, з умов виробничих та технологічних процесів. Обмеженнями є не тільки матеріальні, фінансові та трудові ресурси. Такими можуть бути можливості технічного, технологічного та взагалі наукового потенціалу. Математично обмеження існують у вигляді рівнянь та нерівностей. Їх сукупність є множиною планів задачі.
- Предмет математичного моделювання.
- Моделювання в економіці.
- 3. Класификація економіко – математичних моделей. Формальна класіфикація моделей.
- 4. Задачі планування та організації виробництва.
- 4.1. Задача про максимальну рентабельність підприємства.
- 4.2. Задача про завантаження обладнання.
- Питання для самоконтролю.
- Тема 1. Предмет, методи і завдання дисципліни. Класифікація задач. Лекція 2
- Задачі математичного програмування.
- 2. Класифікація методів математичного програмування.
- 3. Модель міжгалузевого балансу „Витрати - випуск”.
- Коефіціети прямих та побічних витрат.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 3 Тема лекції: Основні теореми та властивості задач лінійного програмування (лп).
- 1. Загальна форма задачі лінійного програмування (лп).
- 2. Форми запису загальної задачі лп.
- 3. Основні теореми та властивості задачі лп.
- Питання для самоконтролю.
- Тема 2.Загальна задача лінійного програмування та деякі зметодів її розв’язування Лекція 4 Тема лекції: Графічний метод розв’язування задач лп.
- 2. Графічний метод розв’язування задач лп з
- 3. Приклади розв’язування задач лп графічним методом.
- Питання для самоконтролю.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язання Лекція 5 Тема лекції: Розв’язання задач лп симплекс-методом.
- 1. Симплекс-метод із стандартним базисом.
- 2. Теоретичні основи симплекс-метода.
- 3. Поняття виродженності задач лп.
- Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 6 Тема лекції: Розв’язання задач лп симплекс-методом (продовження)
- 4. Правило уникнення зациклювання при застосуванні симплекс-методу.
- 5. Метод штучної базиси розв’язування задач лп.
- 6. Приклад вирішення задачі лп методом штучної бази.
- Питання для самоконтролю.
- Тема 3. Транспортна задача. Лекція 7 Тема лекції: Транспортна задача
- 1 Економічна та математична моделі транспортної задачі.
- 2 Основні теореми транспортної задачі.
- 3. Метод північно-західного кута (діагональний.)
- Тема 3. Транспортна задача. Лекція 8 Тема лекції: Транспортна задача (продовження)
- 5. Метод потенціалів.
- 6. Приклад вирішення транспортної задачі.
- 7. Ускладнені задачі транспортного типу.
- Тема 3. Транспортна задача. Лекція 9 Тема лекції: Транспортна задача (продовження)
- Задача про призначення.
- Розподільчи задачі загального типу.
- Модель розподільчої задачі
- Етапи розв’язання розподільчої задачі
- Приклад вирішення задачі типу тз.
- Питання для самоконтролю.
- Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач. Лекція 10. Тема лекції: Двоїста задача лінійного програмування
- 1 Математичні моделі двоїстих задач.
- 3 Взаємозв’язок розв’язків прямої та двоїстої задач.
- Питання для самоконтролю.
- Тема 5. Цілочислові та параметричні задачі лінійного програмування
- Тема лекції: Узагальнення задачі лінійного програмування.
- Задачі цілочислового програмування.
- 2. Метод Гоморі.
- 3. Параметричне лінійне програмування.
- Питання для самоконтролю.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри
- 1. Постановка задач теорії парних ігор з нульовою сумою.
- Задачі з сідловою точкою. Задачі в чистих стратегіях.
- Ігри в мішаних стратегіях. Основна теорема теорії ігор.
- Тема 6. Елементи теорії ігор
- Тема лекції: Матричні ігри (продовження)
- 4. Графічний метод розв’язання теорії ігор.
- 5. Зведення задач теорії ігор до задач лп.
- Зведення задачі лп до матричної гри.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем
- Тема лекції: Задача дробово-лінійного програмування
- Постановка задачі дробово-лінійного програмування.
- 2. Приведення задачі дробово-лінійного програмування до задачі лінійного програмування.
- 3. Розв’янання задач дробово-лінійного програмування.
- 4. Графічне розв’язання задачі дробово-лінійного програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Задачі нелінійного програмування
- 1. Класичні методи розв’язання задач нелінійного програмування.
- 2. Метод множників Лагранжа.
- 3. Задачі опуклого програмування.
- Задачі опуклого програмування.
- Питання для самоконтролю.
- Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- Тема лекції: Основні поняття теорії варіаційного числення
- Поняття про функціонал.
- 2. Екстремум функціоналу.
- 3. Класичні задачі варіаційного числення.
- 4. Варіація функції та приріст функціоналу.
- 5. Перша та друга варіації функціоналу.
- Питання для самоконтролю.