Следствие 2
В плоскости Лобачевского L2 сумма углов треугольника не постоянна и может принимать любое значение больше нуля и меньше .
2. Взаимное расположение прямых в плоскости L2
Всякие две прямые в плоскости L2 либо пересекаются, либо параллельны, либо являются расходящимися, т.е. не параллельны и не пересекаются, рис. 3.
3. Перпендикуляр к стороне угла
Для любого угла, образованного пересечением прямыхОА и ОВ (рис. 12), на любой из его сторон (например, на стороне ОА) существует такая точка М, что перпендикуляр, восстановленный к ОА из точки М, будет параллелен второй стороне угла OB (рис. 12): MBOA, и MB||OB. При этом всякий перпендикуляр, выходящий из точки М’ОМ, пересекает противоположную сторону угла ОВ, а всякий перпендикуляр, восстановленный из точки M"MA, не имеет общих точек со стороной OB.
4. Четвертый признак конгруэнтности треугольников
В абсолютной геометрии без привлечения аксиомы параллельности доказываются три признака конгруэнтности треугольников. В планиметрии Лобачевского справедлив еще один, четвертый признак. Если три угла одного треугольника конгруэнтны соответствующим трем углам второго треугольника, то эти треугольники конгруэнтны [7].
Вывод 2
Рассмотренные выше неевклидовы отношения 1–4 между прямыми на плоскости Лобачевского являются логическим следствием 15 аксиом планиметрии Лобачевского и реализуются в модели Пуанкаре L2.
О роли открытия неевклидовой геометрии
Открытие мыслимой неевклидовой геометрии задолго до построения ее реализаций и последовавшие затем открытия ее реализаций Гауссом, Клейном, Бельтрами и Пуанкаре явились прологом пересмотра многих устоявшихся фундаментальных понятий в теории познания. Вначале подверглись анализу идеи и методы доказательства в классической математике и математической логике. Это привело к рождению теории множеств и развитию дедуктивного формализма в математике на новом структурном уровне. Новые геометрические идеи математического формализма подняли научный уровень теоретической физики, а затем и всего естествознания.
В современной науке понятие реализации или модели некоторой системы аксиом используется для проверки основных требований, предъявляемых к аксиоматическому методу в моделировании вообще и в математическом моделировании в частности.
- Глава I 9
- Глава I математический формализм
- О понятии действительных чисел
- Формализм натуральных чисел
- Операции, определяющие формирование множества рациональных чисел
- Вывод 1
- Вывод 2
- Замечание 1
- Аксиоматика рациональных чисел
- Определение 1
- Следствие
- Задачи, приводящие к расширению множества рациональных чисел
- Задача 1
- Задача 2
- Вывод 3
- Аксиоматизация множества действительных чисел
- Аксиома непрерывности Кантора.
- Аксиоматическое обоснование евклидовой геометрии
- О “Началах” Евклида
- Аксиоматика д. Гильберта(1862–1943)
- Группа 1. Аксиомы соединения
- Теорема 1
- Теорема 2
- Теорема 3
- Группа 2. Аксиомы порядка
- Определение
- Группа 3. Аксиомы конгруэнтности
- Теорема (о внешнем угле треугольника)
- Определение движения
- Замечание 1
- Вывод 1
- Вывод 2
- Группа 4. Аксиомы непрерывности
- Замечание 2
- Замечание 3
- Вывод 3
- Группа 5. Аксиома параллельности
- Замечание 4
- Два недостатка аксиоматики д. Гильберта
- Структура векторного пространства
- Модель направленных отрезков
- Сложение обладает свойствами:
- Свойства операции умножения:
- Определение
- Арифметическая модель векторного пространства
- Теорема размерности
- Вывод 1
- Вывод 2
- Вывод 3
- Аксиомы скалярного произведения векторов
- Следствие
- Следствие
- Вывод 4
- Определение
- Модель Вейля евклидовой геометрии
- Арифметизация трехмерного евклидова пространства
- Свойства операции откладывания вектора
- Определение
- Вывод 1
- Вывод 2
- Многомерное арифметическое евклидово пространство
- Вывод 3
- Замечание
- Следствие 1
- Основные факты в планиметрии Лобачевского
- 1. Сумма углов многоугольника в плоскости l2
- Следствие 2
- Вывод 3
- Глава II свойства аксиоматических систем
- Математические структуры и аксиоматические теории
- Понятие отношений между объектами
- Следствие 1
- Пример 1
- Определение
- Следствие 2
- Понятие математической структуры
- Определение
- Замечание 1
- Формальная и содержательная аксиоматики. Теории и структуры
- Рассмотрим пример
- Вывод 1
- Вывод 2
- Определение
- Изоморфизм
- Пример 1
- Пример 2
- Определение изоморфизма
- Вывод 3
- Вывод 1
- Независимость аксиоматической системы
- Независимость аксиомы параллельности
- Замечание 1
- Дедуктивная полнота и категоричность системы аксиом
- Определение (дедуктивной полноты)
- Определение (категоричности)
- Историческая роль V постулата Евклида в развитии оснований математики
- Анализ текстовых парадоксов
- Языковые свойства имен объектов
- Пример 1
- Пример 2
- Пример 3
- Проблема выразимости
- Понятие искусственного языка
- Понятие парадокса
- “Ахиллес и черепаха”
- Парадокс пустого множества
- Парадокс достижимости в натуральном ряде
- “Одно и то же, но по–разному”
- Пример 1
- Пример 2
- Заключение
- Обозначения.
- Литература