logo
Аффинные преобразования евклидовой плоскости в сопряжённых комплексных координатах

§2. Уравнение образа прямой при аффинном преобразовании

Как известно из определения аффинного преобразования, прямая переходит на прямую. Возьмём уравнение прямой , где . (3)

Любая точка M(z), принадлежащая этой прямой, при аффинном преобразовании (2) перейдёт в некоторую точку M(z), комплексная координата которой . Выразим из этого равенства и сопряжённого к нему : откуда получаем , то есть

"right">, где . (4)

Это формула преобразования, обратного аффинному преобразованию (2).

Но вернёмся к нашим рассуждениям и подставим в (3) выражение z через z и в результате чего получим следующее равенство :

. Теперь раскроем скобки и сгруппируем множители перед z и , а оставшиеся слагаемые будем считать свободным членом, получим уравнение образа прямой:

"right">. (5)

Очевидно, что это уравнение прямой: коэффициенты при z и сопряжены, а свободный член является действительным числом. Таким образом, получили уравнение образа прямой при аффинном преобразовании (2).