logo
Аффинные преобразования евклидовой плоскости в сопряжённых комплексных координатах

§4. Параболический поворот

Покажем, что параболу можно перевести в себя при преобразовании её с помощью композиции сдвига и параллельного переноса, не параллельного оси сдвига. Пусть М - произвольная точка параболы П с осью l (рис. 6), примем эту ось за действительную. Произведём сдвиг с этой же осью l: , где , . Этот сдвиг переведёт точку М в точку М1 и параболу П - в параболу П1. Параболы П и П1 равны с точностью до сдвига.

Рис. 6

Теперь произведём параллельный перенос параболы П1: (), где . Тем самым, парабола П1 перейдёт в параболу П, а точка М1 перейдёт в точку М параболы П.

Таким образом получили, что парабола переходит в себя при преобразовании её с помощью композиции сдвига и параллельного переноса, не параллельного оси сдвига [1,3]. Это преобразование называется параболическим поворотом и имеет формулу , где , , (30)

Определитель найденного преобразования . Так как определитель отличен от нуля, параболический поворот является аффинным преобразованием, а так как он больше нуля, - аффинным преобразованием первого рода.

Найдём собственные числа параболического поворота аналогично тому, как делали это для других рассмотренных аффинных преобразований. Найдём собственные числа л из условия . В процессе нахождения приходим к характеристическому уравнению , но так как , характеристическое уравнение примет вид , откуда . Следовательно параболический поворот имеет только один инвариантный пучок параллельных прямых, параллельных оси сдвига.