logo
Аффинные преобразования евклидовой плоскости в сопряжённых комплексных координатах

§ 3. Формула обратного преобразования

В предыдущем параграфе нами была найдена формула (4) преобразования, обратного аффинному преобразованию (2). Покажем, что данное преобразование также является аффинным. Для этого достаточно доказать, что его определитель не равен нулю.

Рассмотрим определитель преобразования (4), он равен: , приведём к общему знаменателю и сократим на общий множитель, получим: , где , следовательно, определитель обратного преобразования (4) находится в следующей зависимости с определителем преобразования (2): и он не равен нулю. Следовательно, обратное преобразование (4) также является аффинным, что и требовалось доказать.