7.1. Неподвижные точки аффинных преобразований
Найдём координаты неподвижных точек аффинного преобразования (2). Для неподвижных точек, то есть для точек, переходящих в себя при аффинном преобразовании, должно выполняться следующее условие: z=z, то есть
"right"> . (7)Выразим отсюда z. Для этого решим следующую систему
"right"> ( где ) (8)Получили координату точки, являющейся инвариантом аффинного преобразования с коэффициентами a, b, c.
Тогда для аффинного преобразования возможны три случая [1]:
1) неподвижных точек не существует;
2) неподвижная точка единственная;
3) неподвижных точек бесконечно много.
Рассмотрим каждый из этих случаев.
1. Неподвижных точек не существует тогда и только тогда, когда для коэффициентов преобразования выполняется условие: Преобразовав второе условие системы, получим . (9)
Выполнимость этой системы и является условием того, что для данного аффинного преобразования неподвижных точек не существует.
2. Неподвижная точка единственна тогда и только тогда, когда
"right">, то есть (10)3. Неподвижных точек бесконечно много тогда и только тогда, когда выполняется условие что равносильно системе
"right"> (11)Возьмём условие неподвижности точки: (12)
и рассмотрим два случая:
1) Пусть с?0, тогда умножим (12) на с, получим: . Воспользовавшись системой (11), получим равенство:
"right">, (13)где коэффициенты при z и сопряжены, а свободный член является действительным числом, следовательно, равенство (13) при условии (11) задаёт прямую неподвижных точек.
2) Пусть теперь с=0, тогда (12) представится в виде . Выразим отсюда z: , откуда Приравняем правые части и получим равенство , что равносильно условию . Поделим на z?0, в результате чего получим . То есть условие (11) задаёт прямую неподвижных точек (12), которая называется осью аффинного преобразования. Если такая прямая есть, то аффинное преобразование называется родством.
Если а=1, то - единственная неподвижная точка, и аффинное преобразование называется центроаффинным.
Если b=0 и c?0, то аффинное преобразование является параллельным переносом.
Если b=0 и c=0, то аффинное преобразование является тождественным.
- Предисловие
- Глава I. Теория аффинных преобразований в сопряжённых комплексных координатах
- §1. Определение и формула аффинного преобразования в сопряжённых комплексных координатах
- 1.1. Определение аффинного преобразования
- 1.2. Формула аффинного преобразования
- §2. Уравнение образа прямой при аффинном преобразовании
- § 3. Формула обратного преобразования
- § 4. Основная теорема теории аффинных преобразований
- §5. Свойство площадей треугольников
- §6. Род аффинного преобразования
- 6.1. Ориентация плоских фигур
- 6.2. Ориентация пар векторов
- §7. Неподвижные точки и двойные прямые аффинных преобразований
- 7.1. Неподвижные точки аффинных преобразований
- 7.2. Двойные прямые аффинных преобразований
- Глава II. Частные виды аффинных преобразований в сопряжённых комплексных координатах
- §1. Преобразование подобия
- §2. Преобразование родства
- 2.1. Понятие преобразования родства
- 2.2. Сжатие и его частные виды
- §3. Эллиптический поворот
- §4. Параболический поворот
- §5. Представление аффинных преобразований композициями их частных видов
- Библиографический список
- Аффинные преобразования на плоскости
- 5.2. Однородные координаты на расширенной евклидовой плоскости
- 34. Аффинные преобразования координат на плоскости:
- Лабораторная работа 2. Аффинные преобразования на плоскости
- 21)Определение аффинного преобразования плоскости. Примеры аффинных преобразований. Свойства аффинных преобразований.
- Проективные преобразования проективной плоскости.
- 10)Двумерные аффинные преобразования координат.
- 10) Двумерные аффинные преобразования координат.
- 4.2.6. Аффинные и проективные преобразования