6.2. Ориентация пар векторов
Если на плоскости задана система координат, то одну из двух ориентаций плоских фигур называют обычно положительной, а другую - отрицательной. За положительную принимается ориентация, определяемая обходом координатного треугольника ОЕ1Е2 (рис. 1) или, что то же самое, направлением вращения от вектора к вектору (на угол, меньший 1800). В связи с этим введём также понятие ориентации пары векторов: будем называть пару векторов и ориентированной положительно, если направление вращения (на наименьший возможный угол) от к совпадает с направлением вращения от к ; в противном случае пару векторов и назовём ориентированной отрицательно.
Рис. 1
Выясним теперь, как определить ориентацию пары векторов и , заданных своими комплексными координатами p и q соответственно. Очевидно, что если угол между векторами положительно ориентирован, то его синус положителен, в противном случае - отрицателен.
Используем формулу синуса угла между векторами, заданными своими комплексными координатами: . Найдём синус угла между векторами (p) и (q): . Здесь числитель - чисто мнимое число, следовательно, знак синуса угла зависит от знака числа .
Образом вектора (p) при аффинном преобразовании (2) будет вектор с комплексной координатой , вектор , являющийся образом вектора (q) при этом же аффинном преобразовании будет иметь комплексную координату . Найдём теперь синус угла между векторами и : . Упростив правую часть равенства, получим: . Знак синуса угла между векторами и зависит от знаков выражений и так как второе из них присутствует в выражении , то именно от выражения зависит, будет ли знак синуса угла между векторами и отличаться от знак синуса угла между векторами и . То есть если значение выражения положительно, то ориентация пары векторов и будет совпадать с ориентацией пары векторов и . В противном случае при аффинном преобразовании (2) ориентация пары векторов сменится на противоположную.
Таким образом, аффинное преобразование (2) сохраняет ориентацию пары векторов (и, соответственно, плоских фигур) в случае, когда его определитель положителен. В этом случае преобразование (2) является аффинным преобразованием первого рода. Иначе, аффинное преобразование меняет ориентацию пары векторов (и, соответственно, плоских фигур) в случае, когда его определитель отрицателен. И в таком случае преобразование (2) является аффинным преобразованием второго рода.
- Предисловие
- Глава I. Теория аффинных преобразований в сопряжённых комплексных координатах
- §1. Определение и формула аффинного преобразования в сопряжённых комплексных координатах
- 1.1. Определение аффинного преобразования
- 1.2. Формула аффинного преобразования
- §2. Уравнение образа прямой при аффинном преобразовании
- § 3. Формула обратного преобразования
- § 4. Основная теорема теории аффинных преобразований
- §5. Свойство площадей треугольников
- §6. Род аффинного преобразования
- 6.1. Ориентация плоских фигур
- 6.2. Ориентация пар векторов
- §7. Неподвижные точки и двойные прямые аффинных преобразований
- 7.1. Неподвижные точки аффинных преобразований
- 7.2. Двойные прямые аффинных преобразований
- Глава II. Частные виды аффинных преобразований в сопряжённых комплексных координатах
- §1. Преобразование подобия
- §2. Преобразование родства
- 2.1. Понятие преобразования родства
- 2.2. Сжатие и его частные виды
- §3. Эллиптический поворот
- §4. Параболический поворот
- §5. Представление аффинных преобразований композициями их частных видов
- Библиографический список
- Аффинные преобразования на плоскости
- 5.2. Однородные координаты на расширенной евклидовой плоскости
- 34. Аффинные преобразования координат на плоскости:
- Лабораторная работа 2. Аффинные преобразования на плоскости
- 21)Определение аффинного преобразования плоскости. Примеры аффинных преобразований. Свойства аффинных преобразований.
- Проективные преобразования проективной плоскости.
- 10)Двумерные аффинные преобразования координат.
- 10) Двумерные аффинные преобразования координат.
- 4.2.6. Аффинные и проективные преобразования