4.1. Геометрические преобразования на плоскости
Вычислительным аппаратом при построении и применении математических моделей являются матрицы и определители.
Проективная геометрия в аналитическом изложении описывается с помощью матриц.
В качестве элементов матрицы могут фигурировать различные величины: числа, сетки или коэффициенты систем уравнений. Правила в матричной алгебре определяют допустимые операции над элементом. Многие физические задачи удобно выражать в матричном представлении. Для моделей физических систем задача обычно ставится следующим образом: даны матрицы [A] и [B], найти результирующую матрицу [T], такую, что [A] [T]=[B]. В этом случае решением является матрица [Т]=[А]-1 [В], где [А]-1 – матрица, обратная к квадратной матрице [А].
В то же время матрицу [Т] можно интерпретировать как геометрический оператор. В этом случае для выполнения геометрического преобразования точек, представленных векторами положений в матрице [А], используется умножение матриц. Предположим, что матрицы [А] и [Т] известны. Требуется определить элементы матрицы [В]. Представление [Т] как геометрического оператора является основой математических преобразований, используемых в машинной графике.
- Инженерная геометрия
- Часть 3
- Краткое содержание конспекта лекций
- Часть 1
- Часть 2
- Часть 3
- Оглавление Введение 5
- Введение
- 4. Элементы вычислительной геометрии
- 4.1. Геометрические преобразования на плоскости
- 4.1.1. Преобразование точек и линий
- 4.1.1.1. Изображение и преобразование точек
- 4.1.1.2. Преобразование прямых линий
- Пример 1. Средняя точка прямой
- 4.1.2. Преобразование параллельных и пересекающихся прямых
- Пример 2. Пересекающиеся прямые
- 4.1.3. Преобразование: поворот, отражение, масштабирование
- 4.1.3.1. Поворот
- 4.1.3.2. Отражение
- Пример 3. Отражение и вращение
- 4.1.3.3. Масштабирование
- Комбинированные преобразования
- 4.1.5. Преобразование единичного квадрата
- 4.1.6. Однородные координаты
- 4.1.6.1. Геометрическая интерпретация однородных координат
- Пример 6. Проецирование в однородных координатах
- 4.1.6.2. Геометрическая интерпретация пропорционального масштабирования
- 4.1.6.3. Точки бесконечности в однородных координатах
- 4.1.7. Перемещения
- 4.1.7.1. Поворот вокруг произвольной точки
- Пример 7. Поворот относительно произвольной точки
- 4.1.7.2. Отражение относительно произвольной прямой
- Пример 8. Отражение относительно произвольной прямой
- 4.1.8. Правило выполнения преобразований
- 4.2. Пространственные преобразования
- 4.2.1. Трехмерное масштабирование
- 4.2.2. Трехмерное вращение вокруг осей координат
- 4.2.3. Поворот вокруг оси, параллельной координатной оси
- 4.2.4. Поворот вокруг произвольной оси в пространстве
- 4.2.5. Отражение в пространстве
- 4.2.6. Аффинные и проективные преобразования
- 4.3. Плоские и пространственные кривые. Поверхности
- 4.3.1. Представление плоских кривых
- 4.3.1.1. Непараметрические кривые
- 4.3.1.2. Параметрические кривые
- Непараметрический вид
- 4.3.2. Представление пространственных кривых
- 4.3.3. Представление поверхностей
- Вопросы для самопроверки
- Заключение
- Рекомендуемый библиографический список
- Учебное издание
- Инженерная геометрия
- Часть 3
- 680021, Г. Хабаровск, ул. Серышева, 47.