Решение уравнений вида
Теорема (о корне).
Пусть функция f – возрастает (или убывает) на промежутке I, число а – любое из значений, принимаемых f на этом промежутке. Тогда уравнение f(x)=а имеет единственный корень в промежутке I.
Функция котангенс убывает на интервале и принимает все значения из. Следовательно, по теореме о корне, для любого числаа, в интервалесуществует единственный кореньb уравнения. Это числоbназывают арктангенсом числаа и обозначаютarcсtg a.
О.Арккотангенсом числаа называется такое число из интервала, , котангенс которого равен а.
При любом ана интервалеимеется ровно одно числох,такое, что, - это.
Поэтому уравнениеимеет на интерваледлинойединственный корень. Функция тангенс имеет период. Следовательно, все остальные корни уравнения отличаются от найденного на, т.е..
Решение уравнения удобно проиллюстрировать с помощью линии котангенсов (см. рис.15). Для любого числаана линии котангенсов есть лишь одна точка с ординатойа- это точка. ПрямаяОТпересекается с единичной окружностью в двух точках; при этом интервалусоответствует точкаправой полуокружности, такая, что.
-
Yandex.RTB R-A-252273-3
Содержание
- Элементарная математика
- Часть1. (Алгебра и начала анализа)
- Основные определения
- Свойства функции и её график
- Свойства:
- Свойства функции и её график
- Свойства:
- Свойства функции и её график. Взаимное расположение графика квадратичной функции и оси абсцисс.
- Свойства:
- Взаимное расположение графика квадратичной функции и оси абсцисс.
- Свойства функции и её график
- Свойства:
- Свойства функции и её график
- Свойства:
- Свойства функции и её график
- Свойства:
- Свойства функции и её график
- Свойства:
- Свойства функции и её график
- Свойства:
- Свойства функции и её график
- Свойства:
- Свойства степени. Показательная функция и её свойства.
- Свойства степени с натуральным показателем
- Свойства степени с действительным показателем
- Свойства:
- Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, степени, частного. Зависимость между логарифмами числа по разным основаниям.
- Свойства:
- Преобразование графиков функций
- Формула корней квадратного уравнения. Теорема Виета. Формула корней квадратного уравнения.
- Теорема Виета.
- Разложение квадратного трехчлена на линейные множители
- Формулы сокращенного умножения.
- Свойства числовых неравенств.
- Свойства числовых равенств.
- Метод интервалов
- Формулы приведения.
- Зависимости между тригонометрическими функциями одного и того же аргумента
- Тригонометрические функции двойного и половинного аргумента
- Преобразование суммы (разности) в произведение
- Преобразование произведения в сумму.
- Обратные тригонометрические функции. (Теорема о корне и теорема об обратной функции)
- Арксинус
- Арккосинус
- Арктангенс
- Арккотангенс
- Решение уравнений вида
- Решение уравнений вида
- Решение уравнений вида
- Решение уравнений вида
- Решение уравнений типа с помощью вспомогательного аргумента.
- Признаки делимости на 2,3,5,9,10.
- Делимость на 2
- Делимость на 3 на 9
- Делимость на 5
- Делимость на 10
- Квадратный корень из числа. Арифметический квадратный корень, его свойства. Корень и арифметический корень п-ой степени
- Свойства арифметического квадратного корня
- Cвойства
- Геометрическая прогрессия. Формулы п-го члена и суммы п первых членов геометрической прогрессии. Характеристическое свойство геометрической прогрессии.
- Тригонометрическая окружность
- Сборник формул
- Библиографический список