1.1 Основные понятия теории обыкновенных дифференциальных уравнений
Дифференциальным уравнением называется уравнение, содержащее производные неизвестной функции.
Если в дифференциальном уравнении неизвестная функция является функцией одной независимой переменной, то оно называется обыкновенным дифференциальным уравнением. Дифференциальное уравнение вида (1.1) представляет пример выше описанного уравнения:
. (1.1)
Если же входящая в дифференциальное уравнение неизвестная функция зависит от нескольких независимых аргументов, то оно называется уравнением в частных производных. Примером служит уравнение
, (1.2)
которое содержит неизвестную функцию .
Порядком дифференциального уравнения называется наибольший порядок входящей в уравнение производной. Так дифференциальные уравнения (1.1) и (1.2) - это уравнения второго порядка.
Решением дифференциального уравнения называется функция, которая при подстановке в дифференциальное уравнение обращает его в тождество.
Например, легко проверить, что функция является решение дифференциального уравнения . Процесс решения дифференциального уравнения называется интегрированием уравнения. Обыкновенное дифференциальное уравнение n-го порядка можно представить в виде:
(1.3)
Содержит неизвестную переменную , неизвестную функцию и её производные , , …, .
График решения дифференциального уравнения называется интегральной кривой.
Уравнение считается проинтегрированным, если его решение найдено в явном виде или определяется неявно уравнением вида независимо от того, удается ли разрешить это уравнение относительно неизвестной функции или нет. Уравнение , которое определяет решение дифференциального уравнения, называется интегралом этого дифференциального уравнения.
- Введение
- 1.1 Основные понятия теории обыкновенных дифференциальных уравнений
- 1.2 Понятие об уравнении в полных дифференциалах
- Глава 2. Интегрирующий множитель. Простейшие случаи нахождения интегрирующего множителя
- 2.1 Общая теория
- 2.2 Один общий способ нахождения интегрирующего множителя
- 2.3 Случай интегрирующего множителя, зависящего только от и только от
- 2.4 Случай интегрирующего множителя вида
- 2.5 Интегрирующий множитель и особые решения
- 2.6 Интегрирующий множитель уравнения с разделяющимися переменными
- Заключение