Непрерывные случайные величины. Нормальный закон распределения
Вероятность попадания в заданный интервал нормальной случайной величины
Уже известно, что если случайная величина X задана плотностью распределения f (х), то вероятность того, что X примет значение, принадлежащее интервалу (a,b), такова:
P(a<X<b)=
Пусть случайная величина X распределена по нормальному закону. Тогда вероятность того, что X примет значение, принадлежащее интервалу (a,b), равна
P(a<X<b)=
Преобразуем эту формулу так, чтобы можно было пользоваться готовыми таблицами. Введем новую переменную z = (x--а)/--s. Отсюда x = sz+a, dx = sdz . Найдем новые пределы интегрирования. Если х= a, то z=( a-a)/--s; если х = b , то z = (b-а)/--s.
Таким образом, имеем
Пользуясь функцией Лапласа
окончательно получим
(*)
Содержание
- Историческая справка
- Применение
- Непрерывные случайные величины и нормальный закон распределения. Определение функции распределения
- Свойства функции распределения
- График функции распределения
- Определение плотности распределения
- Вероятность попадания непрерывной случайной величины в заданный интервал
- Нахождение функции распределения по известной плотности распределения
- Свойства плотности распределения
- Вероятностный смысл плотности распределения
- Числовые характеристики непрерывных случайных величин
- Нормальное распределение
- Нормальная кривая
- Влияние параметров нормального распределения на форму нормальной кривой
- Вероятность попадания в заданный интервал нормальной случайной величины
- Вычисление вероятности заданного отклонения
- Правило трех сигм
- Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- Закон равномерного распределения вероятностей
Похожие материалы
- Законы распределения непрерывных случайных величин Закон нормального распределения (Гаусса)
- 3. Непрерывные случайные величины. Нормальный закон распределения (закон Гаусса).
- Тема 5. Непрерывные случайные величины. Нормальный закон распределения
- 5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин
- 55. Непрерывные распределения случайных величин. Нормальное распределение.
- 9)Случайная величина и ее закон распределения. Дискретные и непрерывные случайные величины.
- Тема 5. Непрерывные случайные величины. Нормальный закон распределения
- Тема 5. Непрерывные случайные величины. Нормальный закон распределения