logo
Непрерывные случайные величины. Нормальный закон распределения

Числовые характеристики непрерывных случайных величин

Пусть непрерывная случайная величина X задана плотностью распределения f(x). Допустим, что все возможные значения X принадлежат отрезку [а, b]. Разобьем этот отрезок на п частичных отрезков длиной ,,..., и выберем в каждом из них произвольную точку xi (i = 1, 2, ..., п). Нам надо определить математическое ожидание непрерывной величины; составим сумму произведений возможных значений xi на вероятности попадания их в интервал ; (напомним, что произведение f(х) приближенно равно вероятности попадания X в интервал ):

Перейдя к пределу при стремлении к нулю длины наибольшего из частичных отрезков, получим определенный интеграл

Математическим ожиданием непрерывной случайной величины- X, Возможные значения которой принадлежат отрезку [a,b], называют определенный интеграл

M(X)= (*)

Если возможные значения принадлежат всей оси Ох, то

M(X)=

Предполагается, что несобственный интеграл сходится абсолютно, т. е. существует интеграл Если бы это требование не выполнялось, то значение интеграла зависело бы от скорости стремления (в отдельности) нижнего предела к --, а верхнего--к +.

Дисперсией непрерывной случайной величины называют математическое ожидание квадрата ее отклонения.

Если возможные значения X принадлежат отрезку[a,b], то

D(X)=

если возможные значения принадлежат всей оси х, то

D(X)=

Среднее квадратическое отклонение непрерывной случайной величины определяется равенством

s(X)=.

Замечание 1. Можно доказать, что свойства математического ожидания и дисперсии дискретных величин сохраняются и для непрерывных величин.

Замечание 2. Легко получить для вычисления дисперсии более удобные формулы:

D(X)= (**)

D(X)=

Замечание 3. Математическое ожидание и дисперсия случайной величины R, распределенной равномерно в интервале (0, 1), т. е. если a = 0, b=1, как следует из примера 2, соответственно равны М (R) = 1/2, D(R)=l/12. Этот же результат мы получили в примере 1 по заданной функции распределения случайной величины R.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4