logo
Непрерывные случайные величины. Нормальный закон распределения

Вероятность попадания в заданный интервал нормальной случайной величины

Уже известно, что если случайная величина X задана плотностью распределения f (х), то вероятность того, что X примет значение, принадлежащее интервалу (a,b), такова:

P(a<X<b)=

Пусть случайная величина X распределена по нормальному закону. Тогда вероятность того, что X примет значение, принадлежащее интервалу (a,b), равна

P(a<X<b)=

Преобразуем эту формулу так, чтобы можно было пользоваться готовыми таблицами. Введем новую переменную z = (x--а)/--s. Отсюда x = sz+a, dx = sdz . Найдем новые пределы интегрирования. Если х= a, то z=( a-a)/--s; если х = b , то z = (b-а)/--s.

Таким образом, имеем

Пользуясь функцией Лапласа

окончательно получим

(*)

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4