Правило трех сигм
Преобразуем формулу (см. § 6)
Р (| X -- а |< d) = 2Ф (d /--s),
положив d = st. В итоге получим
Р (| X -- а |< st) = 2Ф (t).
Если t = 3 и, следовательно, st =3--s, то
Р (| X--а |< 3--s) = 2Ф (3) = 2 * 0,49865 = 0,9973,
т, е. вероятность того, что отклонение по абсолютной величине будет меньше утроенного среднего квадратического отклонения, равна 0,9973.
Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0,0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие события исходя из принципа невозможности маловероятных событий можно считать практически невозможными. В этом и состоит сущность правила трех сигм: если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.
На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.
- Историческая справка
- Применение
- Непрерывные случайные величины и нормальный закон распределения. Определение функции распределения
- Свойства функции распределения
- График функции распределения
- Определение плотности распределения
- Вероятность попадания непрерывной случайной величины в заданный интервал
- Нахождение функции распределения по известной плотности распределения
- Свойства плотности распределения
- Вероятностный смысл плотности распределения
- Числовые характеристики непрерывных случайных величин
- Нормальное распределение
- Нормальная кривая
- Влияние параметров нормального распределения на форму нормальной кривой
- Вероятность попадания в заданный интервал нормальной случайной величины
- Вычисление вероятности заданного отклонения
- Правило трех сигм
- Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- Закон равномерного распределения вероятностей
- Законы распределения непрерывных случайных величин Закон нормального распределения (Гаусса)
- 3. Непрерывные случайные величины. Нормальный закон распределения (закон Гаусса).
- Тема 5. Непрерывные случайные величины. Нормальный закон распределения
- 5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин
- 55. Непрерывные распределения случайных величин. Нормальное распределение.
- 9)Случайная величина и ее закон распределения. Дискретные и непрерывные случайные величины.
- Тема 5. Непрерывные случайные величины. Нормальный закон распределения
- Тема 5. Непрерывные случайные величины. Нормальный закон распределения