14.1.1. Трансформация аффинного преобразования параллельным переносом
Данную трансформацию рассмотрим в пространстве. Пусть параллельный перенос задан вектором , (a, b, c). Рассмотрим произвольную точку М(x, y, z), найдем ее образ при преобразовании . При параллельном переносе точка М переходит в точку М1(x-a, y-b, z-c). Далее, при аффинном преобразовании g точка М1 переходит в точку М2(a1x + b1y + + c1z - aa1 - bb1 - cc1 + d1, a2x + b2y + c2z - aa2 - bb2 - cc2 + + d2, a3x + b3y + c3z - aa3 - bb3 - cc3 + d3). M2 при параллельном переносе переходит в М3 (a1x + b1y + c1z - aa1 - bb1 - cc1 + d1 + a, a2x + b2y + c2z - aa2 - bb2 - cc2 + d2 + + b, a3x + b3y + c3z - aa3 - bb3 - cc3 + d3 + c) (п. 13). Тогда - аффинное преобразование, аналитически оно задается следующим образом.
(36)
Мы получили, что
, (37)
где (- aa1 - bb1 - cc1 + d1 + a, - aa2 - bb2 - cc2 + d2 + b, - aa3 - bb3 - cc3 + d3 + c).
14.1.2. Трансформация аффинного преобразования центральной симметрией
Рассмотрим центральную симметрию ZO в пространстве, выберем систему координат таким образом, чтобы центр симметрии О совпал с началом координат, тогда О(0, 0, 0). Рассмотрим произвольную точку М(x, y, z), найдем ее образ при преобразовании . Т.к. центральная симметрия инволютивна, то . При центральной симметрии ZO точка М переходит в точку М1(-x, -y, -z). Далее, при аффинном преобразовании g точка М1 переходит в точку М2(-a1x - b1y - c1z + d1, -a2x - b2y - c2z + d2, -a3x - b3y - c3z + d3) (п. 13). M2 при центральной симметрии ZO переходит в М3(a1x + b1y + c1z - d1, a2x + b2y + c2z - d2, a3x + b3y + c3z - d3). Тогда - аффинное преобразование, аналитически оно задается следующим образом.
(38)
Мы получили, что
, (39)
где (-2d1, -2d2, -2d3).
14.1.3. Трансформация аффинного преобразования осевой симметрией
Рассмотрим осевую симметрию Sl в пространстве, выберем систему координат таким образом, чтобы ось симметрии l совпала с осью OZ, тогда Sl будет задаваться следующим образом. Рассмотрим произвольную точку М(x, y, z), найдем ее образ при преобразовании . Т.к. осевая симметрия инволютивна, то . При осевой симметрии Sl точка М переходит в точку М1(-x, -y, z). Далее, при аффинном преобразовании g точка М1 переходит в точку М2(-a1x - b1y + c1z + d1, -a2x - b2y + c2z + d2, -a3x - b3y + c3z + d3) (п. 13). M2 при осевой симметрии Sl переходит в М3(a1x + b1y - c1z - d1, a2x + b2y - c2z - d2, a3x + b3y - c3z - d3). Тогда - аффинное преобразование, аналитически оно задается следующим образом.
(40)
14.1.4. Трансформация аффинного преобразования зеркальной симметрией
Рассмотрим зеркальную симметрию Sб - преобразование постраноства, выберем систему координат таким образом, чтобы плоскость симметрии б совпала с плоскостью XOY, тогда Sб будет задаваться следующим образом. Рассмотрим произвольную точку М(x, y, z), найдем ее образ при преобразовании . Т.к. зеркальная симметрия инволютивна, то . При зеркальной симметрии Sб точка М переходит в точку М1(x, y, -z). Далее, при аффинном преобразовании g точка М1 переходит в точку М2(a1x + b1y - c1z + d1, a2x + b2y - c2z + d2, a3x + b3y - c3z + d3) (п. 13). M2 при зеркальной симметрии Sб переходит в М3(a1x + b1y - c1z + d1, a2x + b2y - c2z + d2, -a3x - b3y + c3z - d3). Тогда - аффинное преобразование, аналитически оно задается следующим образом.
(41)
- 1. Понятие трансформации преобразований
- 2. Трансформация движения движением
- 2.1. Трансформация осевой симметрии движением
- 2.2. Трансформация параллельного переноса движением
- 2.3. Трансформация поворота движением
- 2.4. Трансформация центральной симметрии движением
- 2.5. Трансформация зеркальной симметрии движением
- 2.6. Трансформация поворота относительно оси движением
- 3. Трансформация гомотетии движением
- 4. Трансформация гомотетии гомотетией
- 5. Трансформация движения гомотетией
- 5.1. Трансформация осевой симметрии гомотетией
- 5.2. Трансформация параллельного переноса гомотетией
- 5.3. Трансформация произвольного движения гомотетией
- 6. Трансформация подобия гомотетией
- 7. Трансформация движения подобием
- 8. Трансформация подобия движением
- 9. Трансформация гомотетии подобием
- 10. Трансформация подобия подобием
- 11. Трансформация движения аффинным преобразованием
- 12. Трансформация гомотетии аффинным преобразованием
- 13. Трансформация аффинного преобразования гомотетией
- 13.2. Трансформация косого сжатия гомотетией
- 13.3. Трансформация сдвига гомотетией
- 14. Трансформация аффинного преобразования движением
- 14.1. Трансформация произвольного аффинного преобразования движением
- 14.1.1. Трансформация аффинного преобразования параллельным переносом
- 14.2. Трансформация косого сжатия движением
- 14.3. Трансформация сдвига движением
- 15. Трансформация аффинного преобразования подобием
- 15.1. Трансформация косого сжатия подобием
- 15.2. Трансформация сдвига подобием
- 16. Трансформация аффинного преобразования аффинным преобразованием
- 16.1. Трансформация косого сжатия произвольным аффинным преобразованием
- 17. Решение задач с помощью трансформации преобразований
- Лексические трансформации
- Переводческие трансформации
- 7. Виды лексических трансформаций: антонимический перевод, целостное преобразование, трансформация добавления и опущения в переводе.
- Инструмент "Свободное преобразование" и панель "Преобразование"
- 23. Понятие переводческой трансформации. Грамматические, сематнтические, стилистические трансформации.
- Глава 2. Переводческие трансформации.
- Обзор классификаций переводческих трансформаций
- 3.4. Вставка растровых изображений в гис-проект, трансформация и преобразование растров, их координатная привязка