logo
Трансформация преобразований

1. Понятие трансформации преобразований

Если f и g - преобразования некоторого множества, например, множества всех точек плоскости, и f(A)=B, g(A)=A1, g(B)=B1, то точке А1 поставим в соответствие точку В1. Вообще, каждую пару (А, f(A)) отобразим преобразованием g. Множество всех полученных при этом новых пар (А1, g(f(A))) есть новое преобразование плоскости, являющееся композицией (рис.1), поскольку эта композиция отображает А1 на В1. Условимся обозначать и говорить, что преобразование f g получается из f под действием преобразования g. Запись f g кратко будем читать «эф под же».

Итак, по определению

, (1)

в частности, и E f = E.

Имеют место следующие формулы:

,

, (2)

(f g)-1 = (f -1)g.

Действительно, . Поскольку , то, вставляя между g и f и используя ассоциативное свойство всякой композиции преобразований, получаем . Далее . Учитывая, что преобразование, обратное композиции данных преобразований, является композицией обратных им преобразований, взятых в обратном порядке, т.е. , получаем . Наконец, .

Если преобразование f инволютивно, то и то и f g также инволютивно. В самом деле, если , но f ? Е, то , но f g ? Е, так как из f g = Е следует f = Е.

Теорема о неподвижной точке. Если А - неподвижная точка преобразования f, то g(A) - неподвижная точка преобразования f g, и обратно:

f(A) = A - f g(g(A)) = g(A).

Доказательство. Если f(A) = A, то f g(g(A)) = g(f(g-1(g(A)))) = =g(f(A)) = g(A). Обратно, если f g(g(A)) = g(A), т.е. g(f(g-1(g(A)))) = g(A), то g(f(A)) = g(A). Поскольку при преобразовании образы любых двух различных точек не совпадают, то из совпадения образов точек f(A) и A при преобразовании g следует и совпадение этих точек: f(A) = A. [1]

Аналогичная теорема имеет место и для двойных прямых.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4