logo
Трансформация преобразований

13.3. Трансформация сдвига гомотетией

Рассмотрим гомотетию и сдвиг g с осью q и коэффициентом m. Найдем, что представляет собой трансформация сдвига гомотетией - , для этого возьмем произвольную точку А и найдем ее образ при данной трансформации (рис. 8).

Точка А при гомотетии перейдет в точку А1, которая при сдвиге перейдет в точку А2 такую, что А1А|| q, . Точка А2 при гомотетии перейдет в точку А3. Заметим, что прямая - инвариантная прямая всей трансформации (по теореме о неподвижных прямых). Из точки А1 проведем перпендикуляр на прямую q А1В1, а из точки А - на прямую q1 - АВ. Тогда АВ - образ отрезка А1В1 при гомотетии , также АА3 - образ отрезка А1А2 при гомотетии , значит, и АА3||А1А2||q||q1, (потому что при гомотетии прямая переходит в параллельную ей прямую), следовательно, и АА3||q1. Мы получили, что при этой трансформации точка А смещается параллельно прямой q1 на расстояние, пропорциональное ее расстоянию от прямой q1: . Следовательно, в силу произвольности точки А, искомая трансформация есть сдвиг с осью и коэффициентом m.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4