Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
Рассматриваются многочлены над числовым полем. Говорят, что многочлен f(x) делится на многочлен g(x), если остаток от деления равен нолю.
Для пары многочленов f(x) и g(x) под общим делителем будем понимать многочлен, который делит f(x) и g(x) без остатка. Общий делитель определён с точностью до числового множителя.
Общий делитель пары многочленов f(x) и g(x) наибольшей степени называется наибольшим общим делителем, и обозначается НОД(f(x),g(x)).
Многочлен наименьшей степени, делящийся на f(x) и g(x) называется их наименьшим общим кратным и обозначается НОК(f(x),g(x)).
Теорема 2.8 Если многочлен делится на многочлены f(x) и g(x), то он делится и на их наименьшее общее кратное.
Доказательство Пусть , а - многочлен, делящийся на f(x) и g(x). Поделим на с остатком , здесь - частное, а - остаток. Выразим . По условиям, правая часть равенства делится без остатка на f(x) и g(x). Таким образом, делится на f(x) и g(x) и имеет степень меньше , что возможно только если
Теорема 2.9 Наибольший общий делитель пары многочленов f(x) и g(x) делится без остатка на любой их общий делитель.
Для доказательства достаточно заметить, что наибольший общий делитель является наименьшим общим кратным общих делителей этих многочленов.
Теорема 2.10 НОД(f(x),g(x))=НОД(f(x)-v(x)g(x),g(x))
Доказательство. Положим и . Поскольку делится на , то делится без остатка на . Аналогично, из равенства вытекает делимость на , а, значит и делимость на . Таким образом многочлены и отличаются только числовым множителем.
Из теоремы вытекает алгоритм Евклида, если в качестве v(x) выбирать частное от деления f(x) на g(x).
Теорема 2.11 Для произвольных многочленов f(x) и g(x) найдутся такие многочлены v(x) и w(x), степень которых не превосходит степени f(x) и g(x), соответственно, что f(x)w(x)+v(x)g(x)=НОД(f(x),g(x)).
Теорема вытекает очевидным образом из алгоритма Евклида.
-
Содержание
- Натуральные числа
- Метод математической индукции.
- Бином Ньютона, треугольник Паскаля
- Целые числа
- Рациональные числа
- Числовые кольца, поля
- Вещественные числа
- Поле комплексных чисел
- Комплексная плоскость.
- Извлечение корней, корни из единицы
- Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
- Разложение рациональных функций в сумму дробей.
- Неприводимый многочлен, его свойства
- Из вытекает, либо , либо .
- Если неприводимый многочлен делится на неприводимый многочлен, то они отличаются числовым множителем.
- Корень многочлена.
- Интерполяционный многочлен
- Интерполяционный многочлен в форме Лагранжа
- Интерполяционный многочлен в форме Ньютона
- Разложение многочлена над полем рациональных чисел
- Примитивный многочлен, его свойства
- Критерий Эйзенштейна
- Все коэффициенты многочлена f(X), кроме старшего, делятся на p
- Старший коэффициент не делится на p
- Свободный член не делится на
- Метод Кронекера разложения многочлена на неприводимые многочлены над кольцом целых чисел.
- Рациональные корни.
- Присоединение корня. Поле разложения многочлена.
- Формальная производная, ее свойства
- Производные высоких порядков
- Интерполяционный многочлен Лагранжа-Сильвестра
- Формулы Виета
- Симметрические полиномы
- Формулы Кардано
- Способ Феррари
- Дискриминант
- Основная теорема Алгебры
- Разложение многочлена на неприводимые множители над полем вещественных чисел
- Теорема Штурма
- Любые два соседних многочлена не имеют общих корней
- Последний многочлен не имеет вещественных корней.
- Если в окрестностях корня a многочлена сам многочлен возрастает, то , а если убывает, то
- Метод Гаусса решения системы линейных уравнений
- Равносильные преобразования
- Умножение строки не ненулевое число.
- Перестановка строк
- Прибавление к некоторой строке другой строки, умноженной на число.
- Метод Гаусса.
- Перестановки
- Четность перестановок
- Определитель
- Свойства определителя
- Изменит знак при перестановке столбцов
- Равен нулю, если имеется два одинаковых столбца
- Не изменится при прибавлении к столбцу другого столбца, умноженного на число.
- Вычисление определителей произвольных порядков
- Определитель Вандермонда
- Теорема Лапласа
- Умножение матриц
- Формула Бине-Кощи
- Операции с матрицами
- Обратная матрица
- Правило Крамера
- Матрица элементарных преобразований
- Построение обратной матрицы
- Блочные матрицы
- Алгоритм Штрассена
- Кронекерово произведение
- Формула Фробениуса
- Линейные пространства.
- . Линейная зависимость. Теорема о замене. Ранг системы.
- Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.
- . Прямая сумма подпространств. Проекция.
- Изменение координат вектора при изменении базиса.
- Изоморфизм линейных пространств.
- Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.
- Ранги матрицы.
- Общее решение системы линейных уравнений.
- Двойственное пространство
- Взаимное расположение линейных многообразий в пространстве.
- Геометрия на плоскости и в пространстве.
- Скалярное произведение.
- Симметричность .
- Векторное и смешанное произведение.
- Уравнение прямой и плоскости в пространстве
- Евклидово пространство. Скалярное произведение.
- Изменение матрицы Грама при изменении базиса.
- Ортогональность.