Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.
Опишем множество точек, лежащих на прямой l, проходящей через точки A, B. Если , то векторы и коллинеарные, т.е отличаются числовым множителем. Пусть . Выразим отсюда x: . Данное уравнение называется параметрическим уравнением прямой. Вектор A-B принадлежит прямой и называется направляющим вектором прямой.
В зависимости от параметра получаем различные точки прямой. Если , то получим точку X из отрезка , причём . Если , то получаем точку X, что отрезок содержит точку A, причём . Если , то получаем точку X, что отрезок содержит точку B, причём .
Пусть A,B,C три точки не лежащие на одной прямой. Опишем множество точек плоскости , проходящей через эти три точки. Точка x лежит на плоскости тогда и только тогда, когда вектор x-A является линейной комбинацией векторов B-A и C-A. Следовательно, параметрическое уравнение плоскости имеет вид . Векторы B-A и C-A называются направляющими векторами плоскости.
В
Пусть система векторов - линейно не зависима. Множество точек вида называется линейным многообразием.
Для иллюстрации приведённой теории решим следующую задачу:
Доказать, что в произвольном тетраэдре, все отрезки соединяющие вершины с точкой пересечения медиан треугольника, образованного вершинами противоположной грани, пересекаются в одной точке и найти отношение, в котором делит эти отрезки точка пересечения.
В начале решим вспомогательную задачу: выразить точку пересечения медиан треугольника через его вершины. Обозначим вершины треугольника через A,B,C. Векторы AB и AC выберем в качестве базиса. Тогда, точки имеют координаты A=(0,0), B=(1,0), C=(0,1). Обозначим середину отрезка [BC] через F. Точка F имеет координаты (1/2,1/2). Отрезок [AF] делится точкой пересечения медиан O в соотношении 2:1, следовательно, O=(1/3,1/3). Таким образом, . Рассматривая плоскость как линейное многообразие, получаем . Обозначим через ABCD вершины тетраэдра. В качестве базиса выберем векторы AB, AC, AD. Тогда A=(0,0,0), B=(1,0,0), C=(0,1,0), D=(0,0,1). Точку пересечения медиан треугольника BCD обозначим через F, треугольника ACD – через G. Координаты этих точек равны F=(1/3,1/3,1/3), G=(0,1/3,1/3). Параметрическое уравнение прямой AF имеет вид x=a(1/3,1/3,1/3), а прямой BG x=(1,0,0)+b(-1,1/3,1/3). Точка пересечения H этих прямых находится из системы уравнений a(1/3,1/3,1/3)=(1,0,0)+b(-1,1/3,1/3) и H=(1/4,1/4,1/4) (получается при a=b=3/4). Отрезки AF и BG в точке пересечения делятся в отношении 3:1. Выбирая в качестве B любую вершину тетраэдра (отличную от A) получим, что все отрезки соединяющие вершины с точкой пересечения медиан треугольника, образованного вершинами противоположной грани, пересекаются в одной точке H и делятся в отношении 3:1.
- Натуральные числа
- Метод математической индукции.
- Бином Ньютона, треугольник Паскаля
- Целые числа
- Рациональные числа
- Числовые кольца, поля
- Вещественные числа
- Поле комплексных чисел
- Комплексная плоскость.
- Извлечение корней, корни из единицы
- Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
- Разложение рациональных функций в сумму дробей.
- Неприводимый многочлен, его свойства
- Из вытекает, либо , либо .
- Если неприводимый многочлен делится на неприводимый многочлен, то они отличаются числовым множителем.
- Корень многочлена.
- Интерполяционный многочлен
- Интерполяционный многочлен в форме Лагранжа
- Интерполяционный многочлен в форме Ньютона
- Разложение многочлена над полем рациональных чисел
- Примитивный многочлен, его свойства
- Критерий Эйзенштейна
- Все коэффициенты многочлена f(X), кроме старшего, делятся на p
- Старший коэффициент не делится на p
- Свободный член не делится на
- Метод Кронекера разложения многочлена на неприводимые многочлены над кольцом целых чисел.
- Рациональные корни.
- Присоединение корня. Поле разложения многочлена.
- Формальная производная, ее свойства
- Производные высоких порядков
- Интерполяционный многочлен Лагранжа-Сильвестра
- Формулы Виета
- Симметрические полиномы
- Формулы Кардано
- Способ Феррари
- Дискриминант
- Основная теорема Алгебры
- Разложение многочлена на неприводимые множители над полем вещественных чисел
- Теорема Штурма
- Любые два соседних многочлена не имеют общих корней
- Последний многочлен не имеет вещественных корней.
- Если в окрестностях корня a многочлена сам многочлен возрастает, то , а если убывает, то
- Метод Гаусса решения системы линейных уравнений
- Равносильные преобразования
- Умножение строки не ненулевое число.
- Перестановка строк
- Прибавление к некоторой строке другой строки, умноженной на число.
- Метод Гаусса.
- Перестановки
- Четность перестановок
- Определитель
- Свойства определителя
- Изменит знак при перестановке столбцов
- Равен нулю, если имеется два одинаковых столбца
- Не изменится при прибавлении к столбцу другого столбца, умноженного на число.
- Вычисление определителей произвольных порядков
- Определитель Вандермонда
- Теорема Лапласа
- Умножение матриц
- Формула Бине-Кощи
- Операции с матрицами
- Обратная матрица
- Правило Крамера
- Матрица элементарных преобразований
- Построение обратной матрицы
- Блочные матрицы
- Алгоритм Штрассена
- Кронекерово произведение
- Формула Фробениуса
- Линейные пространства.
- . Линейная зависимость. Теорема о замене. Ранг системы.
- Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.
- . Прямая сумма подпространств. Проекция.
- Изменение координат вектора при изменении базиса.
- Изоморфизм линейных пространств.
- Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.
- Ранги матрицы.
- Общее решение системы линейных уравнений.
- Двойственное пространство
- Взаимное расположение линейных многообразий в пространстве.
- Геометрия на плоскости и в пространстве.
- Скалярное произведение.
- Симметричность .
- Векторное и смешанное произведение.
- Уравнение прямой и плоскости в пространстве
- Евклидово пространство. Скалярное произведение.
- Изменение матрицы Грама при изменении базиса.
- Ортогональность.