logo
Lektsii_po_GA_1_semestr_PI

Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.

Опишем множество точек, лежащих на прямой l, проходящей через точки A, B. Если , то векторы и коллинеарные, т.е отличаются числовым множителем. Пусть . Выразим отсюда x: . Данное уравнение называется параметрическим уравнением прямой. Вектор A-B принадлежит прямой и называется направляющим вектором прямой.

В зависимости от параметра получаем различные точки прямой. Если , то получим точку X из отрезка , причём . Если , то получаем точку X, что отрезок содержит точку A, причём . Если , то получаем точку X, что отрезок содержит точку B, причём .

Пусть A,B,C три точки не лежащие на одной прямой. Опишем множество точек плоскости , проходящей через эти три точки. Точка x лежит на плоскости тогда и только тогда, когда вектор x-A является линейной комбинацией векторов B-A и C-A. Следовательно, параметрическое уравнение плоскости имеет вид . Векторы B-A и C-A называются направляющими векторами плоскости.

В

зависимости от значений параметров получаются точки из разных областей. На рисунке приведено разбиение на области и указаны значения параметров.

Пусть система векторов - линейно не зависима. Множество точек вида называется линейным многообразием.

Для иллюстрации приведённой теории решим следующую задачу:

Доказать, что в произвольном тетраэдре, все отрезки соединяющие вершины с точкой пересечения медиан треугольника, образованного вершинами противоположной грани, пересекаются в одной точке и найти отношение, в котором делит эти отрезки точка пересечения.

В начале решим вспомогательную задачу: выразить точку пересечения медиан треугольника через его вершины. Обозначим вершины треугольника через A,B,C. Векторы AB и AC выберем в качестве базиса. Тогда, точки имеют координаты A=(0,0), B=(1,0), C=(0,1). Обозначим середину отрезка [BC] через F. Точка F имеет координаты (1/2,1/2). Отрезок [AF] делится точкой пересечения медиан O в соотношении 2:1, следовательно, O=(1/3,1/3). Таким образом, . Рассматривая плоскость как линейное многообразие, получаем . Обозначим через ABCD вершины тетраэдра. В качестве базиса выберем векторы AB, AC, AD. Тогда A=(0,0,0), B=(1,0,0), C=(0,1,0), D=(0,0,1). Точку пересечения медиан треугольника BCD обозначим через F, треугольника ACD – через G. Координаты этих точек равны F=(1/3,1/3,1/3), G=(0,1/3,1/3). Параметрическое уравнение прямой AF имеет вид x=a(1/3,1/3,1/3), а прямой BG x=(1,0,0)+b(-1,1/3,1/3). Точка пересечения H этих прямых находится из системы уравнений a(1/3,1/3,1/3)=(1,0,0)+b(-1,1/3,1/3) и H=(1/4,1/4,1/4) (получается при a=b=3/4). Отрезки AF и BG в точке пересечения делятся в отношении 3:1. Выбирая в качестве B любую вершину тетраэдра (отличную от A) получим, что все отрезки соединяющие вершины с точкой пересечения медиан треугольника, образованного вершинами противоположной грани, пересекаются в одной точке H и делятся в отношении 3:1.