Перестановки
Определение 4.9. Перестановкой n-го порядка называется взаимно однозначное отображение множества чисел от 1 до n на себя.
Перестановки можно записывать в виде таблицы, где под каждым числом стоит его образ. Например, перестановка 3 порядка переводит 1 в 3, 2 в 1 и 3 в 2.
Лемма 4.8. Число перестановок n-го порядка равно n!.
Доказательство очевидно.
Определение перестановки, как взаимно однозначной функции позволяет перенести понятие суперпозиции функций на перестановки. Пусть перестановка f ставит в соответствие номеру i номер f(i), а перестановка g ставит в соответствие номеру j номер g(j). Рассмотрим функцию f(g(i)). Очевидно, эта функция задает взаимно однозначное отображение множества чисел от 1 до n, и, следовательно, определяет перестановку.
Определение 4.10. Перестановку, определенную функцией f(g(i)) называют суперпозицией или произведением перестановок g и f и обозначают gf.
Для примера найдем суперпозицию перестановок и . Поскольку f(g(1))=f(1)=2, f(g(2))=f(3)=3, f(g(3))=f(2)=1, то .
Отметим некоторые свойства операции произведения перестановок.
Свойство 4.1 Операция произведения перестановок не коммутативна, то есть в общем случае.
Действительно, Свойство 4.2. Операция умножения перестановок ассоциативна, то есть f(gh)=(fg)h.
Доказательство. В перестановке f(gh) номер i отображается в номер (gh)(f(i))=h(g(f(i))), а в перестановке (fg)h номер i отображается в число h((fg)(i))=h(g(f(i))). В обоих случаях образ совпадает.
Определение 4.11Перестановка называется тождественной, и обозначается e. Перестановка f называется обратной к перестановке g, если fg=e.
Свойство 4.3. Обратная перестановка существует и единственна.
Доказательство очевидным образом следует из определения перестановки как взаимно однозначного соответствия.
Начиная с некоторого номера j, построим последовательность чисел . В данной последовательности обязательно наступит повторение, поскольку множество значений перестановки конечно. Пусть - наименьший номер, после которого появляется ранее встречавшееся число в последовательности (т.е. и k>s). Если , то номер является образом двух номеров и , что противоречит определению перестановки как взаимно однозначного соответствия. Следовательно, , и последовательность , начиная с члена, начинает повторяться. Не повторяющаяся часть последовательности (т.е. её первые k+1 членов) называется циклом длины k+1.
Циклы называются независимыми, если никакие два цикла не имеют общих номеров.
Кроме табличной записи перестановок существует их запись в виде произведения независимых циклов.
Часто удобно представлять перестановку в виде произведения независимых циклов, а не в табличном виде. В отличие от табличного вида перестановка пишется в строчку. За каждым номером i следует его образ f(i). Номера в цикле разделены тире. Циклы пишутся через запятую. Не пишутся также элементы, которые переходят сами в себя (т.е. циклы длины 1). Например, перестановка запишется как (1-3), а перестановка запишется как (1-3-2, 4-5)
- Натуральные числа
- Метод математической индукции.
- Бином Ньютона, треугольник Паскаля
- Целые числа
- Рациональные числа
- Числовые кольца, поля
- Вещественные числа
- Поле комплексных чисел
- Комплексная плоскость.
- Извлечение корней, корни из единицы
- Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
- Разложение рациональных функций в сумму дробей.
- Неприводимый многочлен, его свойства
- Из вытекает, либо , либо .
- Если неприводимый многочлен делится на неприводимый многочлен, то они отличаются числовым множителем.
- Корень многочлена.
- Интерполяционный многочлен
- Интерполяционный многочлен в форме Лагранжа
- Интерполяционный многочлен в форме Ньютона
- Разложение многочлена над полем рациональных чисел
- Примитивный многочлен, его свойства
- Критерий Эйзенштейна
- Все коэффициенты многочлена f(X), кроме старшего, делятся на p
- Старший коэффициент не делится на p
- Свободный член не делится на
- Метод Кронекера разложения многочлена на неприводимые многочлены над кольцом целых чисел.
- Рациональные корни.
- Присоединение корня. Поле разложения многочлена.
- Формальная производная, ее свойства
- Производные высоких порядков
- Интерполяционный многочлен Лагранжа-Сильвестра
- Формулы Виета
- Симметрические полиномы
- Формулы Кардано
- Способ Феррари
- Дискриминант
- Основная теорема Алгебры
- Разложение многочлена на неприводимые множители над полем вещественных чисел
- Теорема Штурма
- Любые два соседних многочлена не имеют общих корней
- Последний многочлен не имеет вещественных корней.
- Если в окрестностях корня a многочлена сам многочлен возрастает, то , а если убывает, то
- Метод Гаусса решения системы линейных уравнений
- Равносильные преобразования
- Умножение строки не ненулевое число.
- Перестановка строк
- Прибавление к некоторой строке другой строки, умноженной на число.
- Метод Гаусса.
- Перестановки
- Четность перестановок
- Определитель
- Свойства определителя
- Изменит знак при перестановке столбцов
- Равен нулю, если имеется два одинаковых столбца
- Не изменится при прибавлении к столбцу другого столбца, умноженного на число.
- Вычисление определителей произвольных порядков
- Определитель Вандермонда
- Теорема Лапласа
- Умножение матриц
- Формула Бине-Кощи
- Операции с матрицами
- Обратная матрица
- Правило Крамера
- Матрица элементарных преобразований
- Построение обратной матрицы
- Блочные матрицы
- Алгоритм Штрассена
- Кронекерово произведение
- Формула Фробениуса
- Линейные пространства.
- . Линейная зависимость. Теорема о замене. Ранг системы.
- Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.
- . Прямая сумма подпространств. Проекция.
- Изменение координат вектора при изменении базиса.
- Изоморфизм линейных пространств.
- Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.
- Ранги матрицы.
- Общее решение системы линейных уравнений.
- Двойственное пространство
- Взаимное расположение линейных многообразий в пространстве.
- Геометрия на плоскости и в пространстве.
- Скалярное произведение.
- Симметричность .
- Векторное и смешанное произведение.
- Уравнение прямой и плоскости в пространстве
- Евклидово пространство. Скалярное произведение.
- Изменение матрицы Грама при изменении базиса.
- Ортогональность.