Кронекерово произведение
Определение 6.22Пусть и - прямоугольные матрицы соответственно размеров и . Кронекеровым произведением называется матрица размеров следующего блочного строения .
Приведем основные свойства кронекерова произведения матриц.
Свойство 6.16. Пусть и , тогда .
Доказательство следует из правила блочного произведения матриц.
Свойство 6.17. Пусть существуют и , тогда .
Доказательство. По доказанному ранее (Свойство 6 .16), имеем . Из полученного равенства вытекает требуемое утверждение.
Свойство 6.18. .
Доказательство следует из определения операций кронекерова произведения и транспонирования матриц.
Свойство 6.19. Пусть - квадратная матрица порядка , а - квадратная матрица порядка , тогда .
Доказательство. Если матрица A имеет верхний треугольный вид, то утверждение получается последовательным разложением определителя по теореме Лапласа по первым m столбцам. Если матрица A имеет нижний треугольный вид, то утверждение получается последовательным разложением определителя по теореме Лапласа по первым m строкам. Рассмотрим случай, когда матрица A не треугольная. Элементарными преобразованиями со строками (а именно, перестановкой строк и прибавлением к одной строки, другой строки умноженной на число) приведём матрицу A к треугольному виду T. Тогда , где - матрица элементарных преобразований. Имеет место равенство , из которого выводим . Поскольку T – треугольная матрица, то . Матрица элементарного преобразования , если она соответствует прибавлению к некоторой строке другой строки, умноженной на число, имеет треугольный вид, и, значит . Если матрица элементарного преобразования соответствует перестановке двух строк, то . Таким образом, . Для доказательства утверждения осталось заметить равенство .
Следствие 6.14. .
Доказательство проведём индукцией по n. Положим и . При n=2 имеем , т.е. утверждение верно. Пусть оно справедливо при n-1. Тогда , что и требовалось доказать.
- Натуральные числа
- Метод математической индукции.
- Бином Ньютона, треугольник Паскаля
- Целые числа
- Рациональные числа
- Числовые кольца, поля
- Вещественные числа
- Поле комплексных чисел
- Комплексная плоскость.
- Извлечение корней, корни из единицы
- Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
- Разложение рациональных функций в сумму дробей.
- Неприводимый многочлен, его свойства
- Из вытекает, либо , либо .
- Если неприводимый многочлен делится на неприводимый многочлен, то они отличаются числовым множителем.
- Корень многочлена.
- Интерполяционный многочлен
- Интерполяционный многочлен в форме Лагранжа
- Интерполяционный многочлен в форме Ньютона
- Разложение многочлена над полем рациональных чисел
- Примитивный многочлен, его свойства
- Критерий Эйзенштейна
- Все коэффициенты многочлена f(X), кроме старшего, делятся на p
- Старший коэффициент не делится на p
- Свободный член не делится на
- Метод Кронекера разложения многочлена на неприводимые многочлены над кольцом целых чисел.
- Рациональные корни.
- Присоединение корня. Поле разложения многочлена.
- Формальная производная, ее свойства
- Производные высоких порядков
- Интерполяционный многочлен Лагранжа-Сильвестра
- Формулы Виета
- Симметрические полиномы
- Формулы Кардано
- Способ Феррари
- Дискриминант
- Основная теорема Алгебры
- Разложение многочлена на неприводимые множители над полем вещественных чисел
- Теорема Штурма
- Любые два соседних многочлена не имеют общих корней
- Последний многочлен не имеет вещественных корней.
- Если в окрестностях корня a многочлена сам многочлен возрастает, то , а если убывает, то
- Метод Гаусса решения системы линейных уравнений
- Равносильные преобразования
- Умножение строки не ненулевое число.
- Перестановка строк
- Прибавление к некоторой строке другой строки, умноженной на число.
- Метод Гаусса.
- Перестановки
- Четность перестановок
- Определитель
- Свойства определителя
- Изменит знак при перестановке столбцов
- Равен нулю, если имеется два одинаковых столбца
- Не изменится при прибавлении к столбцу другого столбца, умноженного на число.
- Вычисление определителей произвольных порядков
- Определитель Вандермонда
- Теорема Лапласа
- Умножение матриц
- Формула Бине-Кощи
- Операции с матрицами
- Обратная матрица
- Правило Крамера
- Матрица элементарных преобразований
- Построение обратной матрицы
- Блочные матрицы
- Алгоритм Штрассена
- Кронекерово произведение
- Формула Фробениуса
- Линейные пространства.
- . Линейная зависимость. Теорема о замене. Ранг системы.
- Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.
- . Прямая сумма подпространств. Проекция.
- Изменение координат вектора при изменении базиса.
- Изоморфизм линейных пространств.
- Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.
- Ранги матрицы.
- Общее решение системы линейных уравнений.
- Двойственное пространство
- Взаимное расположение линейных многообразий в пространстве.
- Геометрия на плоскости и в пространстве.
- Скалярное произведение.
- Симметричность .
- Векторное и смешанное произведение.
- Уравнение прямой и плоскости в пространстве
- Евклидово пространство. Скалярное произведение.
- Изменение матрицы Грама при изменении базиса.
- Ортогональность.