Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.
Определение 7.31. Пространство называется конечномерным, если оно является линейной оболочкой конечной системы векторов.
Теорема 7.38. Подпространство конечномерного пространства – конечномерно.
Доказательство. Пусть V – конечномерное пространство, W – его подпространство. По определению, V представляется в виде линейной оболочки конечной системы векторов . Проведём доказательство теоремы индукцией по n. При n=1 утверждение очевидно, так как любое подпространство, содержащее не нулевой вектор, в этом случае, совпадает с V. Пусть утверждение доказано для n-1. Покажем его справедливость для n. Возьмём не нулевой вектор и запишем его в виде линейной комбинации . Не нарушая общности можно считать (иначе перенумеруем векторы ). Множество векторов образует подпространство в линейной оболочке и по предположению индукции это подпространство конечномерно. Пусть линейная оболочка векторов совпадает с . Поскольку векторы принадлежат W, то включение очевидно. Пусть - произвольный вектор W. Вектор принадлежит подпространству и , а значит, и их пересечению. Представим вектор в виде линейной комбинации векторов и выразим d () . Таким образом, установлено включение , из которого, в силу произвольности выбора d, выводим равенство , т.е. W - конечномерное подпространство.
Пусть V конечномерное пространство.
Определение 7.32. Минимальная полная система векторов из V называется базисом пространства. Число векторов в базисе называется размерностью пространства.
Размерность пространства V обозначают dimV.
Следствие 7.21 Размерность подпространства не превосходит размерности всего пространства. Если размерность подпространства совпадает с размерностью пространства, то подпространство совпадает с пространством.
Доказательство. Пусть W – подпространство конечномерного пространства V. Обозначим через базис V. Подпространство W - конечно мерно (Теорема 7 .38) и, значит, имеет базис . По теореме о замене выполняется неравенство . В случае равенства из доказательства теоремы о замене вытекает совпадение линейных оболочек .
Определение 7.33. Коэффициенты разложения вектора по базису называются координатами.
Теорема 7.39. Координаты любого вектора существуют и единственны.
Доказательство. Поскольку базис полная система, то любой вектор пространства разложим по базису. Допустим вектор x имеет два различных разложения по базису и . Вычтем одно из другого, получим равенство . В силу линейной независимости базисных векторов, все коэффициенты при базисных векторах равны нулю, а, значит разложения совпадают.
Координаты вектора в базисе обозначим через .
Следствие 7.22. Справедливы равенства , , .
Доказательство очевидно.
Теорема 7.40. (дополнение до базиса)
Базис подпространства конечномерного пространства можно дополнить до базиса всего пространства..
Доказательство. Пусть W подпространство V. Обозначим через базис W а через - базис V. В системе удалим векторы, которые линейно выражаются через предыдущие вектора системы. Получившаяся система будет являться базой, а значит образует базис в пространстве V. Кроме того, векторы линейно независимы, и не могут линейно выражаться через предыдущие вектора системы, и значит, они содержатся в базисе. Фактически получается, что система векторов дополнилась некоторыми векторами из базиса V до базиса всего пространства.
Теорема 7.41 (размерность суммы) Пусть V,W – конечномерные подпространства. Тогда .
Доказательство. Обозначим через базис пространства . Дополним его до базиса пространства V векторами (т.е. - базис V) и до базиса W - векторами (т.е. - базис W). Легко убедиться, что совпадает с линейной оболочкой векторов . Далее, система векторов линейно независима. Действительно, если не так, то линейная комбинация этих векторов с не нулевыми коэффициентами равна нулю. Пусть . Из равенства выводим, что вектор y принадлежит V и W. Раз вектор y принадлежит пересечению , то все (в силу единственности координат), что противоречит линейной независимости системы . Таким образом, система векторов образует базис . Далее, имеем , , и . Для завершения доказательства осталось убедиться в справедливости равенства .
- Натуральные числа
- Метод математической индукции.
- Бином Ньютона, треугольник Паскаля
- Целые числа
- Рациональные числа
- Числовые кольца, поля
- Вещественные числа
- Поле комплексных чисел
- Комплексная плоскость.
- Извлечение корней, корни из единицы
- Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
- Разложение рациональных функций в сумму дробей.
- Неприводимый многочлен, его свойства
- Из вытекает, либо , либо .
- Если неприводимый многочлен делится на неприводимый многочлен, то они отличаются числовым множителем.
- Корень многочлена.
- Интерполяционный многочлен
- Интерполяционный многочлен в форме Лагранжа
- Интерполяционный многочлен в форме Ньютона
- Разложение многочлена над полем рациональных чисел
- Примитивный многочлен, его свойства
- Критерий Эйзенштейна
- Все коэффициенты многочлена f(X), кроме старшего, делятся на p
- Старший коэффициент не делится на p
- Свободный член не делится на
- Метод Кронекера разложения многочлена на неприводимые многочлены над кольцом целых чисел.
- Рациональные корни.
- Присоединение корня. Поле разложения многочлена.
- Формальная производная, ее свойства
- Производные высоких порядков
- Интерполяционный многочлен Лагранжа-Сильвестра
- Формулы Виета
- Симметрические полиномы
- Формулы Кардано
- Способ Феррари
- Дискриминант
- Основная теорема Алгебры
- Разложение многочлена на неприводимые множители над полем вещественных чисел
- Теорема Штурма
- Любые два соседних многочлена не имеют общих корней
- Последний многочлен не имеет вещественных корней.
- Если в окрестностях корня a многочлена сам многочлен возрастает, то , а если убывает, то
- Метод Гаусса решения системы линейных уравнений
- Равносильные преобразования
- Умножение строки не ненулевое число.
- Перестановка строк
- Прибавление к некоторой строке другой строки, умноженной на число.
- Метод Гаусса.
- Перестановки
- Четность перестановок
- Определитель
- Свойства определителя
- Изменит знак при перестановке столбцов
- Равен нулю, если имеется два одинаковых столбца
- Не изменится при прибавлении к столбцу другого столбца, умноженного на число.
- Вычисление определителей произвольных порядков
- Определитель Вандермонда
- Теорема Лапласа
- Умножение матриц
- Формула Бине-Кощи
- Операции с матрицами
- Обратная матрица
- Правило Крамера
- Матрица элементарных преобразований
- Построение обратной матрицы
- Блочные матрицы
- Алгоритм Штрассена
- Кронекерово произведение
- Формула Фробениуса
- Линейные пространства.
- . Линейная зависимость. Теорема о замене. Ранг системы.
- Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.
- . Прямая сумма подпространств. Проекция.
- Изменение координат вектора при изменении базиса.
- Изоморфизм линейных пространств.
- Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.
- Ранги матрицы.
- Общее решение системы линейных уравнений.
- Двойственное пространство
- Взаимное расположение линейных многообразий в пространстве.
- Геометрия на плоскости и в пространстве.
- Скалярное произведение.
- Симметричность .
- Векторное и смешанное произведение.
- Уравнение прямой и плоскости в пространстве
- Евклидово пространство. Скалярное произведение.
- Изменение матрицы Грама при изменении базиса.
- Ортогональность.