Примитивный многочлен, его свойства
Определение 2.3Многочлен над кольцом целых чисел называется примитивным, если наибольший общий делитель его коэффициентов равен 1.
Многочлен с рациональными коэффициентами единственным образом представляется в виде произведения положительного рационального числа и примитивного многочлена. Рациональное число называют содержанием многочлена.
Теорема 2.15 Произведение примитивных многочленов есть примитивный многочлен.
Доказательство проведём методом от противного. Пусть произведение двух примитивных многочленов и есть не примитивный многочлен . Найдётся простое число p, которое делит все коэффициенты многочлена h(x) без остатка. Пусть -самый младший (с наименьшим номером) коэффициент f(x), не делящийся на p без остатка (такой найдётся в силу примитивности многочлена), а - самый младший коэффициент g(x), не делящийся на p без остатка. Коэффициент многочлена h(x) при вычисляется по формуле . Слагаемое делится на p без остатка при s<i, так как левый множитель кратен p, а при s>i, так как правый множитель кратен p. Единственное слагаемое, которое не делится на p, получается при s=i. Следовательно, вся сумма не делится на p, а значит не все коэффициенты h(x) делятся на p, что противоречит сделанному допущению. Тем самым теорема доказана.
Следствие 2.2. Если многочлен с целочисленными коэффициентами приводим над полем рациональных чисел, то он приводим над кольцом целых чисел.
Доказательство. Разложим многочлен над полем рациональных чисел. Каждый множитель представим в виде произведения его содержания и примитивного многочлена. Произведение примитивных многочленов суть примитивный многочлен, поэтому произведение содержаний множителей равно содержанию исходного многочлена. Для завершения доказательства осталось заметить, что содержание исходного многочлена есть целое число.
Таким образом, задача разложения многочлена на неприводимые множители над полем рациональных чисел сводится к аналогичной задаче над кольцом целых чисел.
- Натуральные числа
- Метод математической индукции.
- Бином Ньютона, треугольник Паскаля
- Целые числа
- Рациональные числа
- Числовые кольца, поля
- Вещественные числа
- Поле комплексных чисел
- Комплексная плоскость.
- Извлечение корней, корни из единицы
- Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
- Разложение рациональных функций в сумму дробей.
- Неприводимый многочлен, его свойства
- Из вытекает, либо , либо .
- Если неприводимый многочлен делится на неприводимый многочлен, то они отличаются числовым множителем.
- Корень многочлена.
- Интерполяционный многочлен
- Интерполяционный многочлен в форме Лагранжа
- Интерполяционный многочлен в форме Ньютона
- Разложение многочлена над полем рациональных чисел
- Примитивный многочлен, его свойства
- Критерий Эйзенштейна
- Все коэффициенты многочлена f(X), кроме старшего, делятся на p
- Старший коэффициент не делится на p
- Свободный член не делится на
- Метод Кронекера разложения многочлена на неприводимые многочлены над кольцом целых чисел.
- Рациональные корни.
- Присоединение корня. Поле разложения многочлена.
- Формальная производная, ее свойства
- Производные высоких порядков
- Интерполяционный многочлен Лагранжа-Сильвестра
- Формулы Виета
- Симметрические полиномы
- Формулы Кардано
- Способ Феррари
- Дискриминант
- Основная теорема Алгебры
- Разложение многочлена на неприводимые множители над полем вещественных чисел
- Теорема Штурма
- Любые два соседних многочлена не имеют общих корней
- Последний многочлен не имеет вещественных корней.
- Если в окрестностях корня a многочлена сам многочлен возрастает, то , а если убывает, то
- Метод Гаусса решения системы линейных уравнений
- Равносильные преобразования
- Умножение строки не ненулевое число.
- Перестановка строк
- Прибавление к некоторой строке другой строки, умноженной на число.
- Метод Гаусса.
- Перестановки
- Четность перестановок
- Определитель
- Свойства определителя
- Изменит знак при перестановке столбцов
- Равен нулю, если имеется два одинаковых столбца
- Не изменится при прибавлении к столбцу другого столбца, умноженного на число.
- Вычисление определителей произвольных порядков
- Определитель Вандермонда
- Теорема Лапласа
- Умножение матриц
- Формула Бине-Кощи
- Операции с матрицами
- Обратная матрица
- Правило Крамера
- Матрица элементарных преобразований
- Построение обратной матрицы
- Блочные матрицы
- Алгоритм Штрассена
- Кронекерово произведение
- Формула Фробениуса
- Линейные пространства.
- . Линейная зависимость. Теорема о замене. Ранг системы.
- Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.
- . Прямая сумма подпространств. Проекция.
- Изменение координат вектора при изменении базиса.
- Изоморфизм линейных пространств.
- Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.
- Ранги матрицы.
- Общее решение системы линейных уравнений.
- Двойственное пространство
- Взаимное расположение линейных многообразий в пространстве.
- Геометрия на плоскости и в пространстве.
- Скалярное произведение.
- Симметричность .
- Векторное и смешанное произведение.
- Уравнение прямой и плоскости в пространстве
- Евклидово пространство. Скалярное произведение.
- Изменение матрицы Грама при изменении базиса.
- Ортогональность.