logo
Lektsii_po_GA_1_semestr_PI

Евклидово пространство. Скалярное произведение.

Пусть V линейное пространство над полем вещественных чисел. Функция , ставящая каждой паре векторов в соответствие число, называется скалярным произведением если выполнены аксиомы

  1. Линейность по первому аргументу .

  2. Симметричность:

  3. Положительная определенность при .

Пространство над полем вещественных чисел в котором введено скалярное произведение называется евклидовым.

Величина называется длиной вектора.

Пусть базис V. Выразим скалярное произведение векторов через координаты векторов. Координаты вектора x в базисе e обозначим через . Тогда . Пользуясь свойством линейности выводим . Используя симметричность скалярного произведения и линейности по первому аргументу выводим . Обозначим через G матрицу Грама базисных векторов, то есть матрицу на пересечении строки i столбца j стоит скалярное произведение i-го и j-го вектора . Используя матричные операции умножения получаем .